BHS course: Laboratory hematology

Molecular hematology

Apr. PhD Marie-Berthe Maes

Labo klinische biologie - Hematologie Universitair Ziekenhuis Antwerpen

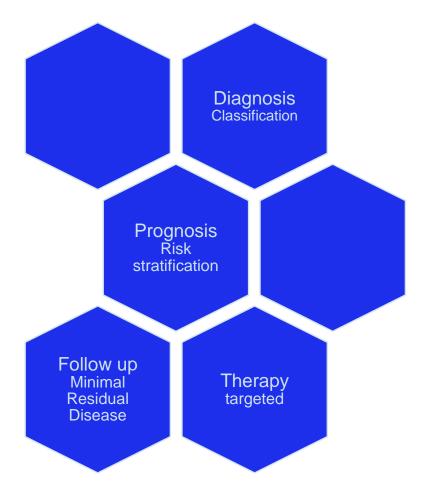
10/2023

Content

Introduction

Molecular testing in hematology - AML

Molecular testing in hematology - AML **Different techniques Translocations RT-PCR** (specific/multiplex) **RNA** sequencing Gene mutations NGS PCR + fragment analysis



UZ/

UZA'

Introduction

Molecular testing in hematology

Molecular genetic testing should screen for all the genetic abnormalities that define disease (**diagnosis and classification**), and risk categories (**prognosis**) or that are needed for targeted treatment modalities (**therapy**).

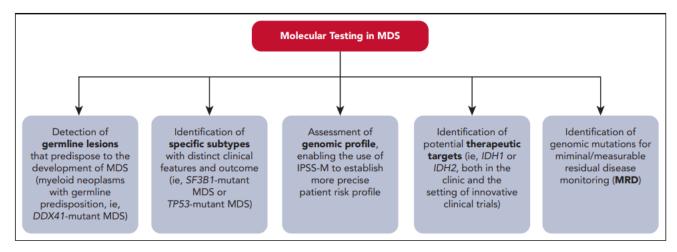


Figure 1. How molecular profiling can inform clinical decision making in MDS. IPSS-M, Molecular International Prognostic Scoring System; MDS, myelodysplastic syndrome; MRD, minimal/measurable residual disease. Professional illustration by Patrick Lane, ScEYEnce Studios.

UZ⁄4

Check for up

Introduction

Molecular testing in hematology: Classification

Leukemia

() Check for updates

www.nature.com/leu

REVIEW ARTICLE OPEN

The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/ Dendritic Neoplasms

Joseph D. Khoury (b)¹⁵⁷, Eric Solary (b)²⁵⁷, Oussama Abla³, Yassmine Akkari (b)⁴, Rita Alaggio⁵, Jane F. Apperley (b)⁶, Rafael Bejar (b)⁷, Emilio Berti⁸, Lambert Busque (b)⁹, John K. C. Chan¹⁰, Weina Chen (b)¹¹, Xueyan Chen¹⁷, Wee-Joo Chng¹³, John K. Choi (b)⁴⁷, Isabel Colmenero (b)¹⁵, Sarah E. Coupland¹⁶, Nicholas C. P. Crosso (b)⁷, Daphne De Jong¹⁸, M. Tarek Elghetany¹⁹, Emiko Takahashi (b)²⁰, Jean-Francois Emile (b)²¹, Judith Ferry²², Linda Fogelstrand²³, Michaela Fontenay²⁴, Ulrich Germing²⁵, Sumeet Gujral²⁶, Torsten Haferlach (b)²⁷, Claire Harrison²⁸, Jennelle C. Hodge²⁹, Shimin Hu (b)¹, Joop H. Jansen³⁰, Rasmet Gujral²⁶, Soheil Meshinchi¹⁶, Phillip Michaels³⁷, Xiao-Qiu Ll³³, Megan S. Lim³⁴, Keith Loeb³⁵, Sanam Loghavi (b), Andrea Marcogliese¹⁹, Soheil Meshinchi¹⁶, Phillip Michaels³⁷, Kikeri N. Naresh (b)³⁵, Yasodha Natkunam (b)³⁸, Reza Nejati¹⁹, German Ott⁴⁰, Fric Padron (b⁴¹, Keyur P. Patel¹, Nikhil Patkar (b)⁴², Jeffrey Tyner (b)⁴⁴, Srdan Verstovsek (b)³¹, Wei Wang (b), Brent Wood⁵⁰, Wenbin Xiao (b)⁵¹, Cecilia Yeung (b)⁵³ and Andreas Hochhaus (b)⁵²⁵

www.nature.com/leu	

Leukemia

Check for updates

REVIEW ARTICLE OPEN

LYMPHOMA

The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms

Rita Alaggio 61, Catalina Amador 2⁻², Ioannis Anagnostopulos 3⁻³, Ayoma D. Attygalle 4⁻⁴, Iguaracyra Barreto de Oliveira Araujo⁵, Emilio Berti 6⁻⁶, Govind Bhagat 7⁻, Anita Maria Borges⁶, Daniel Boyer 6⁻⁷, Mariarita Calaminici 6⁻¹, Amy Chadburn 6⁻¹¹, John K. C. Chan 0⁻¹², Wae-Joo Chang 1⁻³, John K. Choi 9⁻¹⁴, Shih-Sung Chuang 6⁻¹⁵, Sarah E. Coupland 1⁻⁶, Magdalena Czader 6¹⁷, Sandeep S. Dave 6⁻¹⁸, Daphne de Jong 6⁻¹⁹, Ming-Qing Du 5⁻⁰⁵⁸, Kojo S. Elenitoba-Johnson 6²¹, Magdalena Czader 6¹⁷, Sandeep S. Dave 6⁻¹⁸, Daphne de Jong 6⁻¹⁹, Ming-Qing Du 5⁻⁰⁵⁸, Kojo S. Elenitoba-Johnson 6²¹, Judith Ferry 6^{22,57}, Julia Geyer 6¹¹, Dita Gratzinger 6⁻²¹, Joan Guitart 6⁻²⁴, Sumeet Guijal 6²¹, Marian Harris 0²⁶, Christine J. Harrison 6²⁷, Sylvia Hartmann 6²⁸, Andreas Hochhaus 6²⁹, Paty W. Jansen 6³⁰, Konosuke Karube³¹, Wener Kempf 6³², Joseph Khoury 6³³, Hiroshi Kimura 6³⁴, Wolfram Klapper 6³⁵, Alexandra E. Kovach 6³⁰, Shaji Kumar 6²⁷, Alexander J. Lazar 6³⁸, Stefano Lazzi 6³⁹, Lorenzo Leoncini 6³⁹, Nelson Leung 6⁴⁰, Vasiliki Leventaki 6⁴¹, Naol Qui Li 6⁴², Megan S. Lim 6²¹, Wei-Ping Liu 6³⁴, Abner Louissaint Jr. 6²², Andrea Marcoglisee 6⁴¹, L. Jeffrey Medeiros 6³¹, Michael Michall 6⁴⁵, Roberto N. Miranda 6³³, Christina Mitteldorf 6⁴⁶, Santiago Montes-Moreno 6⁴⁷, William Morice 6⁴⁸, Valentina Nardi 6²⁵, Kikkeri N. Naresh 6⁴⁹, Yasodha Natkunam 6²⁴, Siok-Biang Ng 5⁵⁰, Ikke Schlies 6³⁵, German Otte 5¹¹, Marie Parrens 6³², Clémentine Sarkozy 6³⁷, Shahin Sayed 6⁴⁸, Caner Saygin 6³⁵, Anna Rech 6⁴⁸, Andreas Rosenwald 6³, Jonathan Said 6³⁵, Aliyah R. Sohani 6²⁷, Ruben Toozz 6⁶⁶, Alexandra Traverse-Glehen 6⁶⁴, Francisco Vegag³¹, Beatrice Vergier 6⁶⁵, Ashutosh D. Wechalekar 6⁶⁶, Brent Wood⁶⁷, Luc Xerri 6⁶⁷ and Wenbin Xiao 6³³

© The Author(s) 2022

International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data

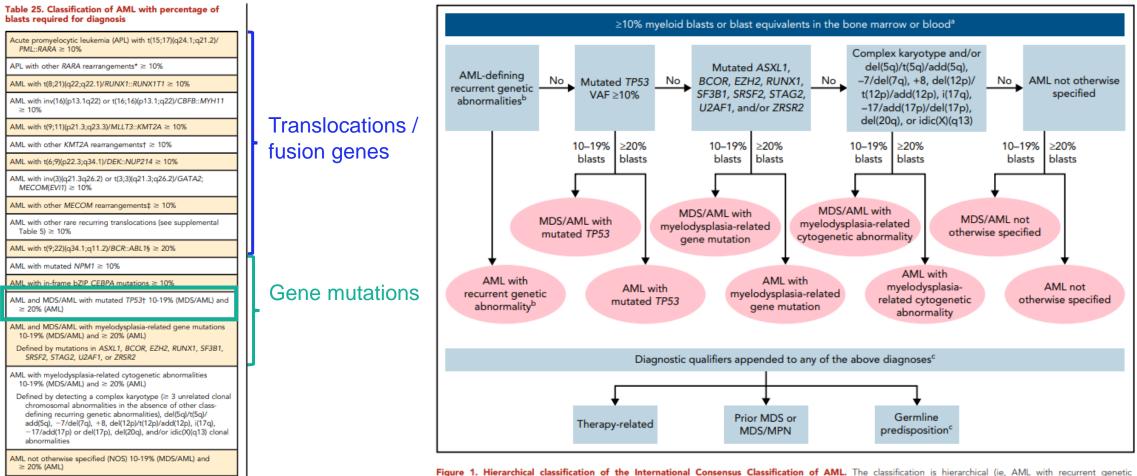
Daniel A. Arber,¹ Attilio Orazi,² Robert P. Hasserjian,³ Michael J. Borowitz,⁴ Katherine R. Calvo,⁵ Hans-Michael Kvasnicka,⁶ Sa A. Wang,⁷ Adam Bagg,⁸ Tiziano Barbui,⁹ Susan Branford,¹⁰ Carlos E. Bueso-Ramos,⁷ Jorge E. Cortes,¹¹ Paola Dal Cin,¹² Courtney D. DiNardo,⁷ Hervé Dombret,¹³ Eric J. Duncavage,¹⁴ Benjamin L. Ebert,¹⁵ Elihu H. Estey,¹⁶ Fabio Facchetti,¹⁷ Kathryn Foucar,¹⁸ Naseema Gangat,¹⁹ Umberto Gianelli,²⁰ Lucy A. Godley,¹ Nicola Gökbuget,²¹ Jason Gotlib,²² Eva Hellström-Lindberg,²³ Gabriela S. Hobbs,³ Ronald Hoffman,²⁴ Elias J. Jabohor,⁷ Jean-Jacques Kiladjian,¹³ Richard A. Larson,¹ Michelle M. Le Beau,¹ Mignon L.-C. Loh,²⁵ Bob Löwenberg,²⁶ Elizabeth Macintyer,²⁷ Luca Malcovati,²⁸ Charles G. Mullighan,²⁹ Charlotte Niemeyer,³⁰ Olatoyosi M. Odenike,¹ Seishi Ogawa,³¹ Alberto Orfao,³² Elli Papaemmanuil,³³ Francesco Passamonti,²⁸ Kimmo Porkka,³⁴ Ching-Hon Pui,²⁷ Jerald P. Radich,³⁵ Andreas Reiter,³⁶ Maria Rozman,³⁷ Martina Rudelius,³⁸ Michael R. Savona,³⁹ Charles A. Schiffer,⁴⁰ Annette Schmitt-Graeff,⁴¹ Akiko Shimamura,^{15,42} Jorge Sierra,⁴³ Wendy A. Stock,¹ Richard M. Stone,¹⁵ Martin S. Tallman,⁴⁴ Jürgen Thiele,⁴⁵ Hwei-Fang Tien,⁴⁶ Alexandar Tzankov,⁴⁷ Alessandro M. Vanuucchi,⁴⁸ Paresh Vyas,⁴⁹ Andrew H. Wei,⁵⁰ Olga K. Weinberg,⁵¹ Agnieszka Wierzbowska,⁵² Mario Cazzola,²⁸ Hartmut Döhner,⁵³ and Ayalew Tefferi¹⁹

UZA'

Introduction

Molecular testing in AML: Diagnosis and classification

WHO 2022

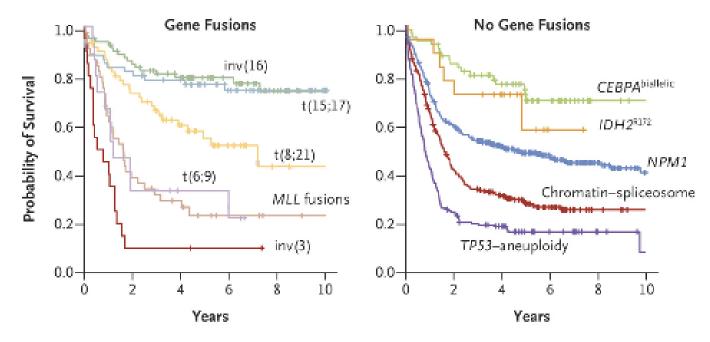

Acute myeloid leukaemia		
Introduction	85%	Table 8. Cytogenetic and molecular abnormalities defining acute
Acute myeloid leukaemia with defining genetic abnormalities		myeloid leukaemia, myelodysplasia-related.
Acute promyelocytic leukaemia with PML::RARA fusion		Defining cytogenetic abnormalities
Acute myeloid leukaemia with RUNX1::RUNX1T1 fusion		Complex karyotype (≥3 abnormalities)
Acute myeloid leukaemia with CBFB::MYH11 fusion		5q deletion or loss of 5q due to unbalanced translocation
Acute myeloid leukaemia with DEK::NUP214 fusion Acute myeloid leukaemia with RBM15::MRTFA fusion	Translocations /	Monosomy 7, 7q deletion, or loss of 7q due to unbalanced translocation
Acute myeloid leukaemia with BCR::ABL1 fusion	fusion genes	11q deletion
Acute myeloid leukaemia with KMT2A rearrangement		12p deletion or loss of 12p due to unbalanced translocation
Acute myeloid leukaemia with MECOM rearrangement		Monosomy 13 or 13q deletion
Acute myeloid leukaemia with NUP98 rearrangement		17p deletion or loss of 17p due to unbalanced translocation
Acute myeloid leukaemia with NPM1 mutation		Isochromosome 17q
Acute myeloid leukaemia with CEBPA mutation	Gene mutations	idic(X)(q13)
Acute myeloid leukaemia, myelodysplasia-related Acute myeloid leukaemia with other defined genetic alterations		Defining somatic mutations
Acute myeloid leukaemia, defined by differentiation		ASXL1
Acute mycloid leukaemia, actined by uncremation		BCOR
Acute myeloid leukaemia without maturation		EZH2
Acute myeloid leukaemia with maturation	-	SF3B1
Acute basophilic leukaemia		SRSF2
Acute myelomonocytic leukaemia		STAG2
Acute monocytic leukaemia		U2AF1
Acute erythroid leukaemia		ZRSR2
Acute megakaryoblastic leukaemia		
Myeloid sarcoma		
Myeloid sarcoma		

Introduction

Molecular testing in AML: Diagnosis and classification

ICC 2022

Myeloid sarcoma


Molecular testing in AML: Prognosis and risk stratification

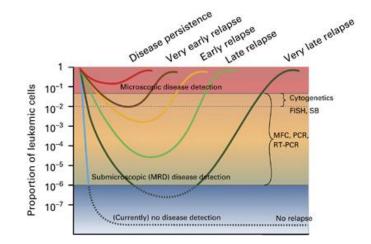
ELN 2022

Introduction

Table 6. 2022 ELN risk classification by genetics at initial diagnosis*

	Risk category†	Genetic abnormality
Translo fusion g		 t(8;21)(q22;q22.1)/RUNX1::RUNX1T1†,‡ inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/ CBFB::MYH11†,‡ Mutated NPM1†,\$ without FLT3-ITD bZIP in-frame mutated CEBPA
	Intermediate	 Mutated NPM1†,\$ with FLT3-ITD Wild-type NPM1 with FLT3-ITD (without adverse-risk genetic lesions) t(9;11)(p21.3;q23.3)/MLLT3::KMT2A†,¶ Cytogenetic and/or molecular abnormalities not classified as favorable or adverse
Gene m	Adverse utations	 t(6;9)(p23.3;q34.1)/DEK::NUP214 t(v;11q23.3)/KMT2A-rearranged# t(9;22)(q34.1;q11.2)/BCR::ABL1 t(8;16)(p11.2;p13.3)/KAT6A::CREBBP inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/ GATA2, MECOM(EV11) t(3q26.2;v)/MECOM(EV11)-rearranged -5 or del(5q); -7; -17/abn(17p) Complex karyotype,** monosomal karyotype†† Mutated ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, and/or ZRSR2‡‡ Mutated TP53^a

Panel shows Kaplan–Meier curves for overall survival among patients in the 11 genomically defined subgroups. Papaemmanuil NEJM 2016


UZA'

Introduction

Molecular testing in AML: Minimal Residual Disease (MRD)

MRD assesment in AML

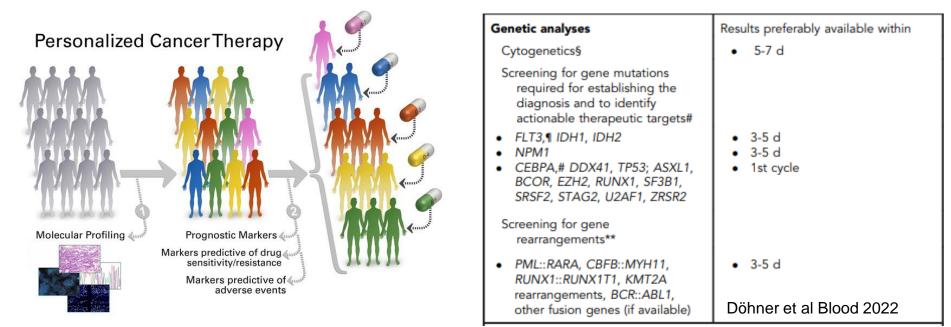
- Establish a deeper remission status (monitoring respons to therapy)
- Refine postremission relapse risk assessment (prognosis)
- Identify impending relapse

Table 7. Methods for detection of MRD in AML

	Method	Target	Sensitivity	Applicable in % of AML	Turn-around time (days)	Limitations/ problems
Established	Multi-parameter flow cytometry (MFC)	Leukemia-associated immunophenotype (LAIP) or different from normal (DfN)	10 ⁻³ to 10 ⁻⁴	85-90	2	Less sensitive, more subjective analysis
Established	Real-time quantitative PCR (RT-qPCR)	Robust data: NPM1, CBFB::MYH11, RUNX1::RUNX1T1 Less validated: KMT2A::MLLT3, DEK::NUP214, BCR::ABL1, WT1	10 ⁻⁴ to 10 ⁻⁵	40-50*	3-5	Limited applicability
Exploratory	Next-generation sequencing (NGS)†,‡	Potentially any somatic mutation†	10 ⁻² to 10 ⁻⁴	~100	5-10	Less sensitive, costly, technically challenging
Exploratory	Digital PCR (dPCR)	Specific targeted mutations	10 ⁻³ to 10 ⁻⁴	~70	3-5	Specific assay necessary for every mutation, limited sensitivity

*Less frequent in elderly patients with AML.

Döhner et al Blood 2022


†The NGS-MRD threshold has not been defined for individual mutations; NGS-MRD positivity is provisionally defined as ≥ 0.1% variant allele frequency, excluding mutations related to clonal hematopoiesis and germline mutations.

‡Common gene mutations consistent with pre-malignant clonal hematopoiesis such as DNMT3A, TET2, and AXSL1 excluded; further study is required to determine which mutations are truly indicative of residual AML and not clonal hematopoiesis.

e.g. RT-qPCR of mutated NPM1, WT1 expression, PML::RARA, RUNX1::RUNX1T1, BCR::ABL1 gene fusions, ...

Introduction

Molecular testing in AML: Targeted therapy

FLT3 mutated AML	Standard CT + FLT3-inhibitor (eg midostaurin)
IDH1/2 mutated AML	Standard CT + IDH1/2-inhibitor (eg ivosidenib, enasidenib)
PML-RARA fusion gene AML	ATRA/ATO
CBF-fusion gene AML	Frontline CT + gemtuzumab ozogamicin
NPM1 mutated AML	Standard CT
Genetically defined MR-AML	Standard CT vs CPX-351 vs Ven-HMA?
TP53 mutated AML	Experimental therapy (eg magrolimab, eprenetapopt)

Content

Introduction

Molecular testing in hematology - AML

Molecular testing in hematology - AML **Different techniques Translocations RT-PCR** (specific/multiplex) **RNA** sequencing Gene mutations NGS PCR + fragment analysis

Laboratory diagnosis of AML

By bone marrow aspiration and biopsy using

morphologic

immunophenotypic

cytogenetic/molecular analysis

Cytology, anatomopathologie

Flowcytometry

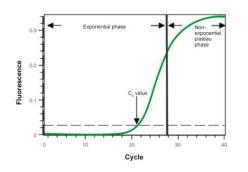
Molecular testing, genetics

Multidisciplinary approach: integrated conclusion WHO2022 + ICC2022

Genetic analyses	Results preferably available within	
Cytogenetics§	• 5-7 d	DNA
Screening for gene mutations		
 required for establishing the diagnosis and to identify actionable therapeutic targets# FLT3,¶ IDH1, IDH2 NPM1 CEBPA,# DDX41, TP53; ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, ZRSR2 	 3-5 d 3-5 d 1st cycle 	 Stable Variability in breakpoints 1 copy/cell: less sensitive
Screening for gene rearrangements**		
 PML::RARA, CBFB::MYH11, RUNX1::RUNX1T1, KMT2A rearrangements, BCR::ABL1, other fusion genes (if available) 	• 3-5 d	Not stable (sample 4°C, RBC lysis <72h) Less variability in fusion genes > copies/cell: sensitive

Döhner et al Blood 2022

Molecular testing in hematology


Different techniques

Molecular testing is defined as any testing that reveals the changes in the nucleotide in a DNA and RNA sequence.

PCR

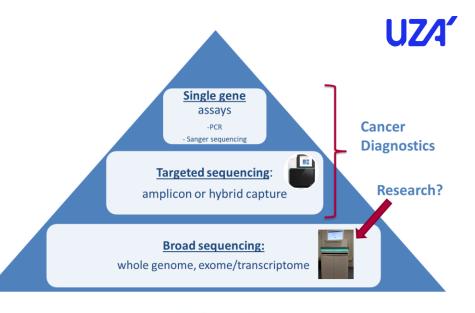
Translocations (RNA) Gene mutations (DNA)

- Conventional PCR
- RT-PCR
- Quantitative PCR
- Allele-specific PCR
- Multiplex PCR
- ...

- Sanger Sequencing
- Next generation Sequencing
 - Targeted next generation sequencing
 - Whole genome sequencing
 - Whole exome sequencing
 - o RNA sequencing

Sequencing

Translocations (RNA) Gene mutations (DNA)


• ...

Molecular testing in hematology

Different Techniques: Choice of technique

• Target?

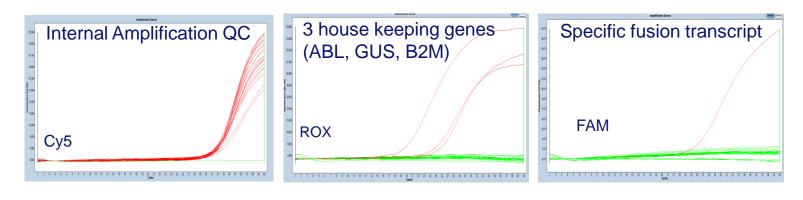
- Detection of fusiontranscripts / DNA mutations?
- Throughput? Single / Multiple genes / hotspot?
- Purpose?
 - TAT: Diagnosis/Therapy?
 - Sensitivity (detection limit): MRD?
- Many commercial kits on the market
 - IVDR?
 - Labor intensivity?
 - Price?
- Reimbursement from RIZIV/Inami?
- Guidelines (Belgium/European)
 - minimum requirements
 - rarely with a specific method or technology

Content

Introduction

Molecular testing in hematology - AML

Molecular testing in hematology - AML **Translocations RT-PCR** (specific/multiplex) **RNA** sequencing


Translocations: detection of fusion genes

PCR

Multiplex screening Real Time-PCR

Hemavision®

- 28 different chromosomal rearrangements/translocations
- (Semi)-Qualitative
- Diagnosis and classification of acute leukemia (AML, ALL)
- CE/IVD kit

UZ⁄4′

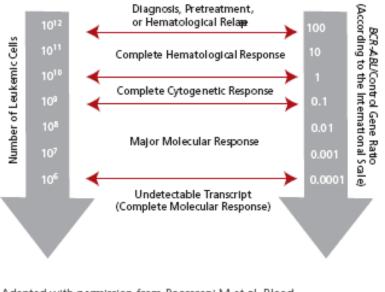
		Hemavisio	on®		
Tube	Translocation	Fusion Gene	Fw primer - Rev primer	Flouroc	hrom
	t(15;17)(q24;q21)	PML-RARA (bor2, V)	PML ex5-RARA ex5	FAM	C
1	Inv(16)(p13;q22)	CBFB-MYH11	CBFB ex3-MYH11 ex30	ROX	C
2	Inv(16)(p13;q22)	CBFB-MYH11	CBFB ex4-MYH11 ex34	FAM	с
2	t(8;21)(q22;q22)	RUNX1-RUNX1T1	RUNX1 ex6-RUNX1T1 ex9	ROX	С
3	t(15;17)(q24;q21)	PML-RARA (bcr1, L)	PML ex6a-RARA ex5	FAM	С
3	t(9;11)(p22;q23)	MLL-MLLT3	MLL ex7-MLLT3 ex7	ROX	С
4	t(15;17)(q24;q21)	PML-RARA (bcr3, S)	PML ex3-RARA ex5	FAM	C
4	t(9;11)(p22;q23)	MLL-MLLT3	MLL ex8-MLLT3 ex11	ROX	C
5	t(11;19)(q23;p13.3)	MLL-ELL	MLL ex7-ELL ex3	FAM	C
5	t(16;21)(p11;q22)	FUS-ERG	FUS ex6-ERG ex14	ROX	c
6	t(12;22)(p13;q11-12)	ETV6-MN1	ETV6 ex2-MN1 ex2	FAM	C
•	t(6;9)(p23;q34)	DEK-NUP214	DEK ex9-NUP214 ex19	ROX	c
7	Reference gene	GUS	GUS ex11-GUS ex12	FAM	C
8	Reference gene	B2M	B2M ex2-B2M ex4	FAM	C
	t(1;11)(p32;q23)	MLL-EPS15	MLL ex8+9-EPS15 ex3	FAM	C
9	t(6;11)(q27;q23)	MLL-MLLT4	MLL ex8+9-MLLT4 ex2	ROX	C
	t(1;19)(q23;p13)	TCF3-PBX1	TCF3 ex16-PBX1 ex3	FAM	C
10	t(12;21)(p13;q22)	ETV6-RUNX1	ETV6 ex5-RUNX1 ex4b	ROX	C
	t(11;19)(q23;p13.3)	MLL-MLLT1	MLL ex8+9-MLLT1 ex2	FAM	0
11	t(4;11)(q21;q23)	MLL-AFF1	MLL ex8+9-AFF1 ex10	ROX	C
	t(17;19)(q22;p13)	TCF3-HLF	TCF3 ex14-HLF ex4	FAM	C
12	del(1)(p32)	STIL-TAL1	STIL ex1-TAL1 ex1	ROX	C
	t(9;22)(q34;q11)	BCR-ABL1 (m-bcr, P190)	BCR ex1-ABL1 ex4	FAM	C
13	t(9;9)(q34;q34)	SET-NUP214	SET ex9-NUP214 ex19	ROX	C
14	t(11;19)(q23;p13.3)	MLL-MLLT1	MLL ex7-MLLT1 ex9	FAM	C
14	t(9;22)(q34;q11)	BCR-ABL1 (M-bcr, P210)	BCR ex12-ABL1 ex4	ROX	C
	t(9;22)(q34;q11)	BCR-ABL1 (µ-bcr, P230)	BCR ex19-ABL1 ex4	FAM	0
15	t(11;17)(q23;q21)	ZBTB16-RARA	ZBTB16 ex4-RARA ex5	ROX	0
16	Reference gene	ABL1	ABL1 ex3-ABL1 ex4	FAM	C
	t(9;12)(q34;p13)	ETV6-ABL1	ETV6 ex2+5-ABL1 ex4	FAM	0
17	t(5;12)(q33;p13)	ETV6-PDGFRB	ETV6 ex2+5-PDGFRB ex12	ROX	0
	t(10;11)(p12;q23)	MLL-MLLT10	MLL ex8+9-MLLT10 ex20	FAM	0
18	t(1;11)(q21;q23)	MLL-MLLT11	MLL ex8+9-MLLT11 ex2	ROX	0
	t(X;11)(q13;q23)	MLL-FOXO4	MLL ex7-FOXO4 ex2	FAM	C
19	t(11;17)(q23;q21)	MLL-MLLT6	MLL ex7-MLLT6 ex12	ROX	0
	t(3;21)(q26;q22)	RUNX1-MECOM	RUNX1 ex6-MECOM ex2	FAM	c
20	t(10;11)(p12;q23)	MLL-MLLT10	MLL ex7-MLLT10 ex9	ROX	c
	t(5;17)(q35;q21)	NPM1-RARA	NPM1 ex4-RARA ex5	FAM	c
21	t(3;5)(q25.1;q35)	NPM1-MLF1	NPM1 ex4-MLF1 ex4	ROX	0
	t(10;11)(p12;q23)	MLL-MLLT10	MLL ex7-MLLT10 ex13	FAM	0
22	t(3;21)(q26;q22)	RUNX1-MECOM	RUNX1 ex6-MECOM ex9	ROX	0
23	t(10;11)(p12;q23)	MLL-MLLT10	MLL ex8-MLLT10 ex12	ROX	c
24		-	-	-	

Translocations: detection of fusion genes

PCR

Multiplex screening RT-PCR

Specific Real Time-PCR


- Quanitative, sensit 10⁻⁵
- Specific
- Urgent diagnosis APL: PML::RARA (<48h)
 - MRD FU AML (PML::RARA, RUNX1::RUNX1T1, CBFB::MYH11, ...)
 - MRD pediatric ALL
 - FU Chronic Myeloid Leukemia: BCR-ABL1

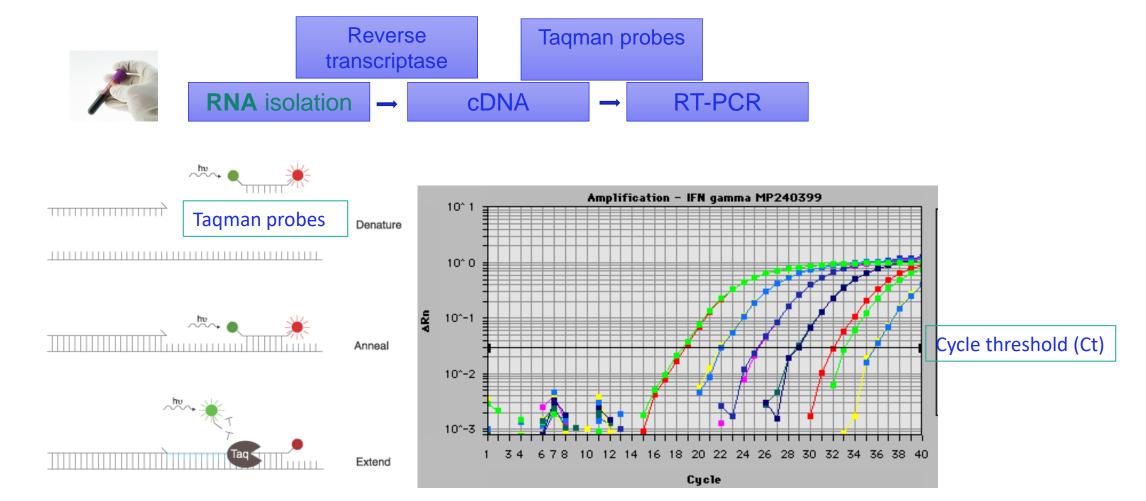
Translocations: detection of fusion genes

Specific real time PCR

- Diagnosis and classification
- Follow up: MRD monitoring
 - Quantitative
 - Sensitive (10⁻⁴ 10⁻⁶)
 - Reproducible
 - Standardized

Figure 1. The BCR-ABL Transcript Percentage Parallels the Number of Leukemic Cells

Adapted with permission from Baccarani M et al. Blood. 2006;108:1809-1820.¹⁰

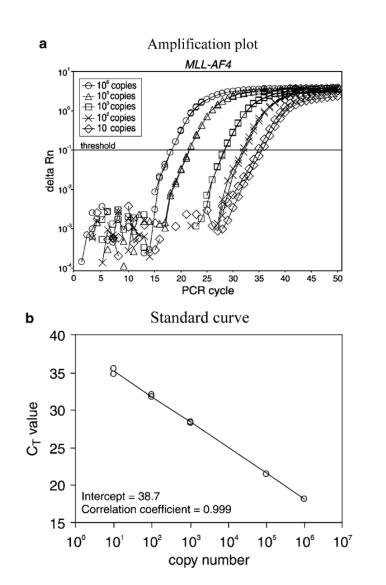

• Standardization MRD EAC-protocol (Gabert et al 2003):

Taqman based quantitative RT-PCR for fusion gene transcripts *RUNX1::RUNX1T1, CBFB::MYH11, PML::RARA, ...*

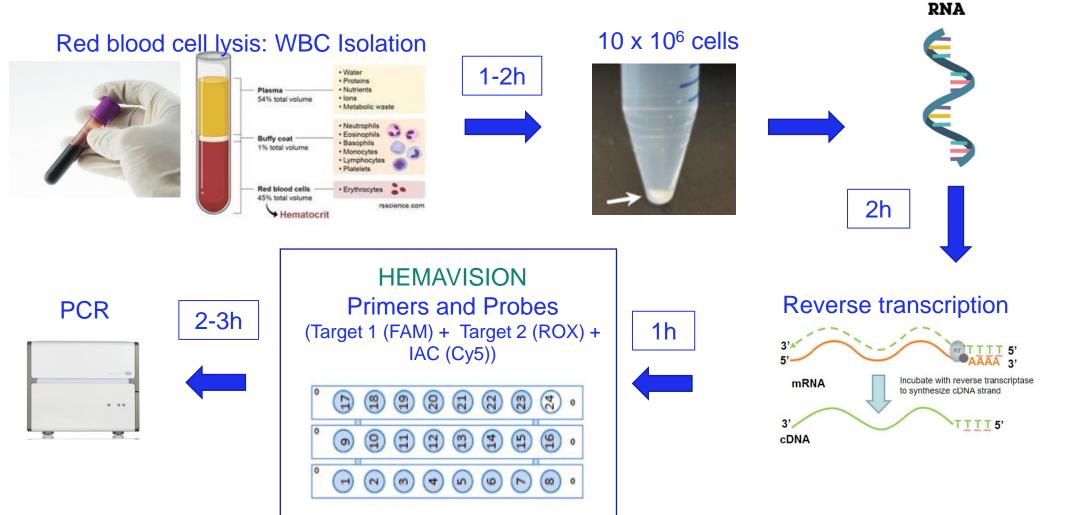
- ELN MRD consensus (Schuurhuis et al 2018)
- ELN MRD updated consensus (Heuser et al. 2021)

Translocations: detection of fusion genes

Specific real time PCR


UZ/

Translocations: detection of fusion genes


Specific real time PCR

Standardization

- Quantification using standard curves
- Each analysis performed in duplicate/triplicate
- Controls included (negative, positive, nontarget)
- Results compared to housekeeping gene
 - ABL, B2M, GUS
 - Gene expression quantitation
 - Normalised Copy Number (NCN/100 ABL)
 - Sample to sample quality variations
 - Sensitivity (# copies housekeeping genes)
 - ➤ "sample-specific LOD"

Translocations: detection of fusion genes Real time PCR

RNA extraction

Translocations: detection of fusion genes

Specific RT-PCR

- Quantitative, Very sensitive
- Fast (1 working day)
- Not too labor intensive
- Affordable

Multiplex screening RT-PCR

- Many relevant translocations in one test
- Fast (1 working day)
- Not too labor intensive
- Simple method (PCR)
- CE/IVD

MRD monitoring

÷

÷

÷

Specific RT-PCR

Limited to 1 specific alteration

Multiplex screening RT-PCR

- Semi-quantitative
- Expensive (~250 €)
- Limited to the list of targets

UZ⁄I

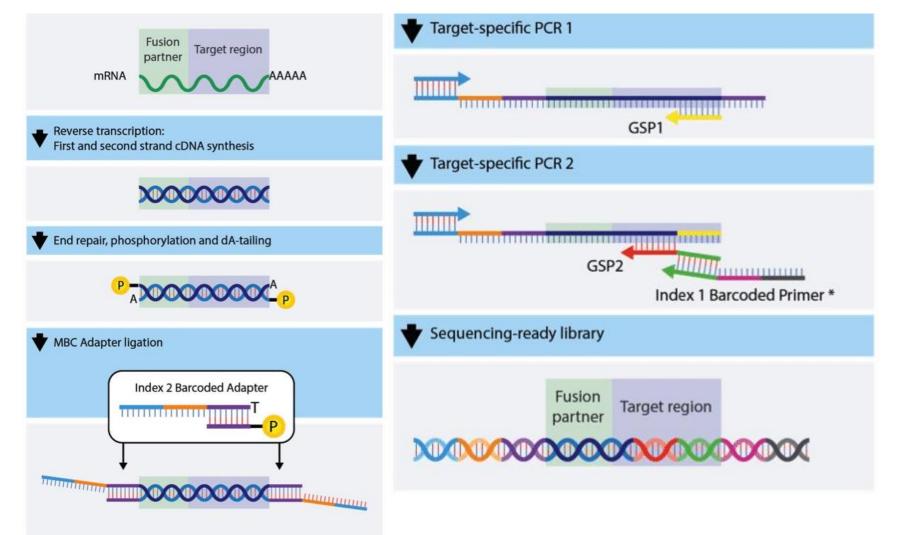
Molecular testing in AML

Translocations: detection of fusion genes

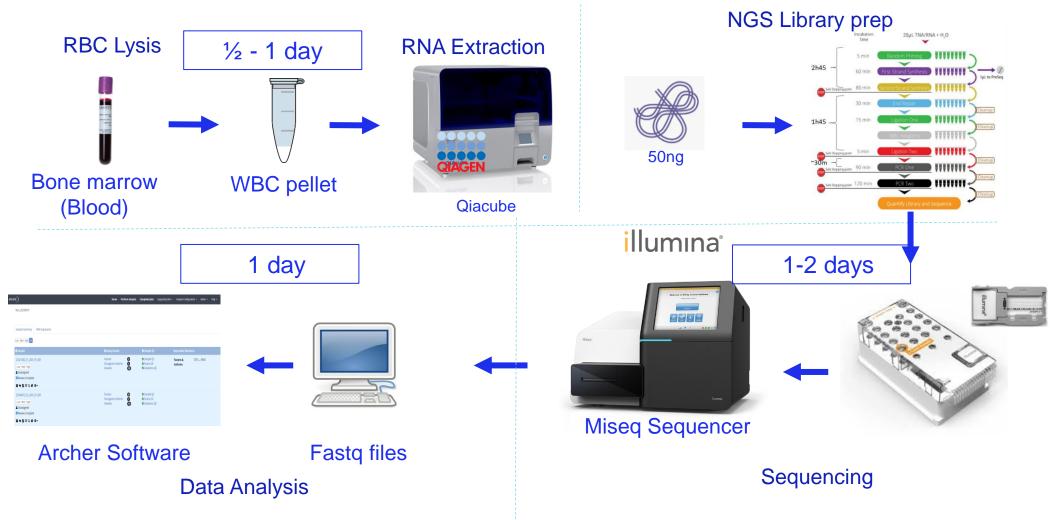
NGS: RNA sequencing

- Qualitative
- Targeted; but not necessary to know the fusion partner

Much bigger panels than with RT-PCR


- Diagnosis and classification of acute leukemia (AML, ALL)
- Many commercial kits available

				Arc	her F	usion	Plex	Pane	l Hen	ne v2	R			UZ	Α
ABL1	••=	ABL2	•	ALK	••	BCL11B	•	BCL2	••=	BCL3	•	BCL6	•	BCR	•
BIRC3	••	CBFB	•	CCND1	••=	CCND2	•	CCND3	•=	CD274	•	CDK6	•	CDKN2A	•
CEBPA	•	CEBPD	•	CEBPE	•	CEBPG	•	CHD1	•	CHIC2	•	CIITA	•	CREBBP	٠
CRLF2	••=	CSF1R	•	CTLA4	•	DEK	•	DUSP22	•	EBF1	•	EIF4A1	•	EPOR	•
ERG	•	ETV6	••	FGFR1	•	FOXP1	•	GLIS2	•	ID4	•	IKZF1	•	IKZF2	•
IKZF3	••	IRF4	•	IRF8	•	JAK2	••	KAT6A	•	KLF2	•	KMT2A	•	MALTI	•
MECOM	• =	MKL1	•	MLF1	•	MLLT10	•	MLLT4	•	MUC1	•	MYC	•	MYH11	•
NF1	•	NFKB2	•	NOTCH1	••	NTRK3	•=	NUP214	•	NUP98	•	P2RY8	•	PAG1	•
PAX5	••	PDCD1	•	PDCD1LG	2	PDGFRA	••	PDGFRB	•	PICALM	•	PML	••	PRDM16	•
PTK2B	•	RARA	••=	RBM15	•	ROSI	•=	RUNX1	•	RUNXITI	•=	SEMA6A	•	SETD2	•
STIL	•	TAL1	•	TCF3	•	TFG	•	TP63	•	TYK2	••	ZCCHC7	•		


LEGEND

SNV/Indel
 Fusion, splicing or exon-skipping
 Expression

Translocations: detection of fusion genes NGS: RNA sequencing

Translocations: detection of fusion genes NGS: RNA sequencing

1,5 days

Translocations: detection of fusion genes

NGS: RNA sequencing

- Large panel of fusion transcripts
- No need to know the fusion partner
- Easy analysis
- Potential to expand to mutation and/or Expression analysis

NGS: RNA sequencing

- Long TAT (1 week)
- Labor intensive
- Expensive (~600 €)

Translocations: detection of fusion genes

Conclusion

	Quantitative RT-PCR	Translocation screening (RT-PCR)	RNA sequencing (NGS)
Sensitivity	+++	++	+
Quantitative	+++	+	+/-
Throughput	-	+	++
Labor Intensive	No	No	Yes
ΤΑΤ	1-2 days	1-2 days	1 week
Cost	<100€	~250 €	~600 €

CHEAP

Content

Introduction

Molecular testing in hematology - AML

Molecular testing in hematology - AML Gene mutations NGS PCR + fragment analysis

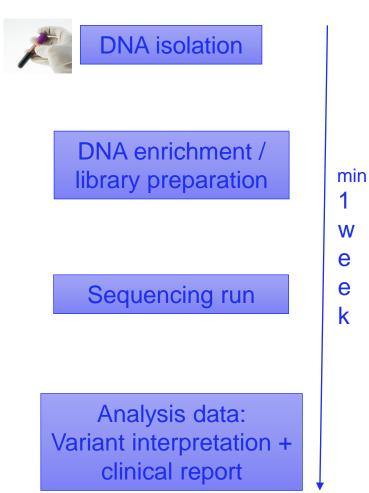
UZA

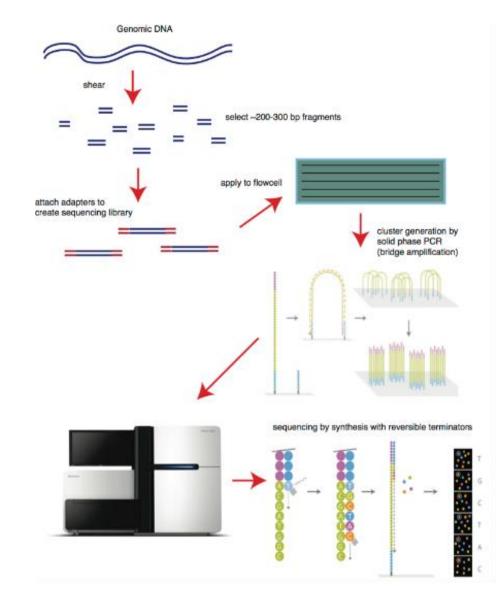
UZ⁄I

Molecular testing in AML

Gene mutations

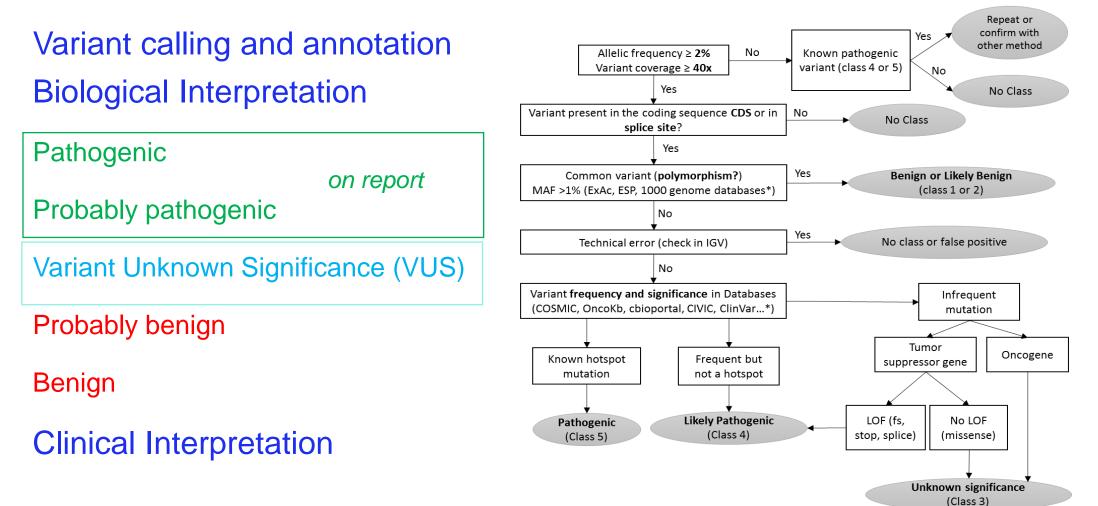
Next Generation Sequencing (NGS)


- Screening
- Targeted (panel), Multiparametric
- Semi-quantitative, sensitivity~5%
- Diagnosis and classification of AML
- Prognosis and risk stratification in AML
- Many commercial panels available
- ComPermed guidelines and workflows (2023)


TEST Variant analysis*: ASXL1, BCOR, CEBPA, DDX41, DNMT3A, EZH2, FLT3, IDH1/2, KIT, NPM1, RUNX1, SF3B1, SRSF2, STAG2, TET2, TP53, U2AF1, WT1, ZRSR2 Overzicht van onderzochte genen/exonen van het Myeloid NGS haloplex HS panel. UZA Referentiegenoom GRCh37(hg19)

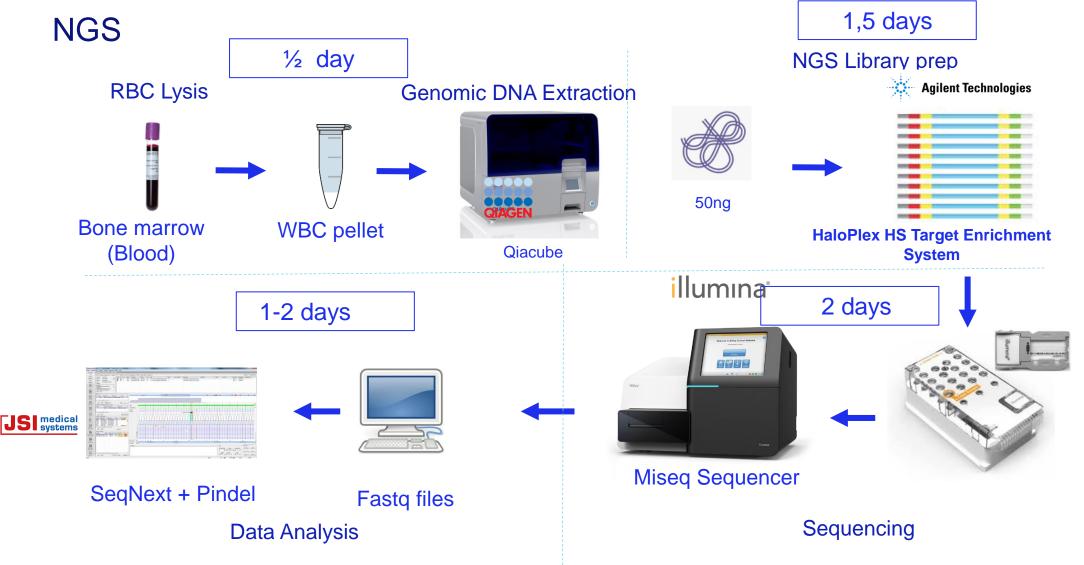
Gen	RefSeq	Exon(en)	Туре
ANKRD26	NM_014915.2	Alle	Tumor Suppressor
ASXL1	NM_015338.5	13 (laatste exon)	Tumor Suppressor
BCOR	NM_017745.5	Alle	Tumor Suppressor
CALR	NM_004343.3	9	Oncogen
CBL	NM_005188.3	8-9	Oncogen/ Tumor Suppressor
CEBPA	NM_004364.3	1	Tumor Suppressor
CSF3R	NM_156039.3	14,17	Oncogen
DDX41	NM_016222.4	Alle	Tumor Suppressor
DNMT3A	NM_175629.2	4,8-23	Tumor Suppressor
ETNK1	NM_018638.4	3	Oncogen
ETV6	NM_001987.4	Alle	Tumor Suppressor
EZH2	NM_004456.4	Alle	Tumor Suppressor/ Oncogen
FLT3	NM_004119.2	14-15, 20	Oncogen
GATA2	NM_032638.5	Alle	Oncogen
IDH1	NM_005896.3	4	Oncogen/ Tumor Suppressor
IDH2	NM_002168.3	4	Oncogen
JAK2	NM_004972.3	12,14	Oncogen
KIT	NM_000222.2	2,8-11,13,14,17	Oncogen
KRAS	NM_004985.4	Alle	Oncogen
MPL	NM_005373.2	10	Oncogen
NF1	NM_001042492.3	Alle	Tumor Suppressor
NPM1	NM_002520.6	11	Oncogen
NRAS	NM_002524.3	2-3	Oncogen
PTPN11	NM_002834.4	3, 13	Oncogen
RUNX1	NM_001754.4	Alle	Tumor Suppressor
SETBP1	NM_015559.3	4	Oncogen
SF3B1	NM_012433.3	13-17	Oncogen
SRSF2	NM_003016.4	1	Oncogen
STAG2	NM_001042749.2	Alle	Tumor Suppressor
TET2	NM_001127208.2	3, 9-11	Tumor Suppressor
TP53	NM_000546.5	Alle	Tumor Suppressor
U2AF1	NM_006758.2	2,6-7	Oncogen
WT1	NM_024426.4	7-9	Tumor Suppressor/ Oncogen
ZRSR2	NM_005089.3	Alle	Tumor Suppressor

Gene mutations Next Generation Sequencing (NGS)



UZ⁄4

Molecular testing in AML


Gene mutations

NGS: Variant interpretation and clinical report standardization"

Gene mutations

UZ⁄I

Molecular testing in AML

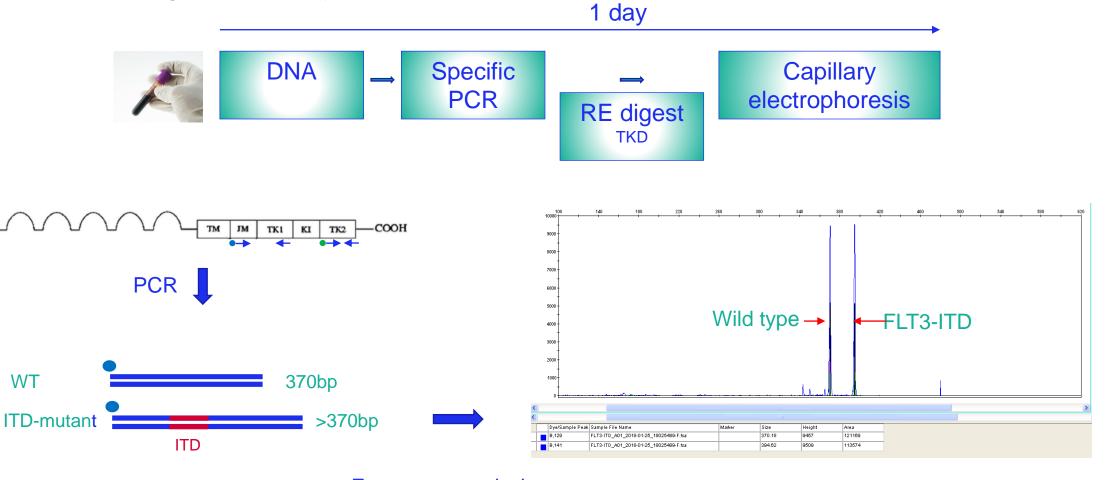
Gene mutations

NGS

- High throughput
- All relevant genes in one test
- Flexible
- Sensitivity: 2-5% VAF

NGS

- Labor intensive
- Sensitivity: 2-5% VAF
- Long TAT (>1 week)
- Expensive (300-500 €)


Gene mutations

Next Generation Sequencing (NGS)

Specific PCR + fragment analysis (PCR)

- (Semi)-qualitative
- Sensitivity ~10%
- Specific (1 test per mutation type)
- Easily standardized
- Only used in special situations:
 - Semi-urgent for therapy: FLT3-ITD/TKD
 - More sensitive technique: CEBPa, large FLT3-ITD (some NGS panels bad coverage)

Gene mutations PCR + fragment analysis

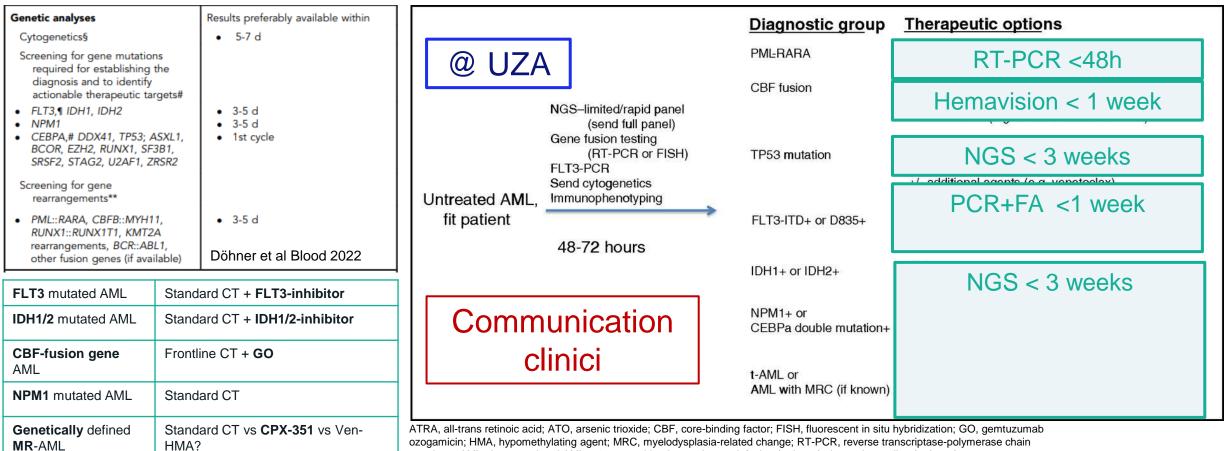
Fragments analysis (Capillary electrophoresis) Murphy et al 2003

UZ/

Gene mutations FLT3 molecular testing

simultaneously

	7/
U	


Fragmentanalysis	NGS		
Specific (1 test per mutation type)	Multigene myeloid mutation panel		
Easily standardised	Labor intensive, highly specialized interpretive skills		
TAT 3-5d	TAT 2-3w		
~ 100 euro (in house)	~ 400 euro		
	False negative results		
Targeted therapy (FLT3-inhibitor) TAT <8days			
Single gene testing Isolate/analyze single gene CTATGCTCG • Narrowly targeted Determine mutation status of limited region • Determine testing	Multiple BRAF O • Cost effective gene testing • Cost effective • Efficient/time-saving KrAS O • KIT O • Yields unexpected Isolate/analyze all relevant (cancer) genes Determine mutation status of all relevant genes • How of all relevant genes		

Experimental therapy

TP53 mutated AML

UZ⁄I

Optimal approach to ensure patients receive precision medicine diagnostics in an expeditious manner?

reaction; t-AML, therapy-related AML; 713, cytarabine by continuous infusion (7 doses) plus anthracycline (3 doses).

Perl et al Blood Advances 2017

Case report: Man 61y pancytopenia

nt gedet

Cytologie/immunofenotyping: Acute Myeloid Leukemia

Fusion genes (Hemavision)

° KMT2A herschikt t(v;11q23)

° Hemavision negatief ° FLT3/int.tandem duplicatie gedetec. ° FLT3/puntmutatie D835 ° RUNX1-RUNX1T1t(8;21) nt gedet nt gedet (q22;q22) ° CBFB-MYH11 inv(16)(p13;q22) nt gedet WT1 overexpression ° PML-RARA t(15;17) (q22;q21) nt gedet ° MLLT3-KMT2A t(9;11)(p22;q23) nt gedet ° DEK-NUP214 t(6;9)(p23;q34) nt gedet ° BCR-ABL1 t(9;22)(q34;q11.2) nt gedet

Gene mutations (PCR+fragmentanalysis)

° WT1 beenmerg (Otsuka) 15436	; copies/µg <1300
-------------------------------	-------------------

Gene mutations (NGS)		AML with myelodysplasia related gene mutations
° Pathogene varianten	2	(mutated SRSF2 and RUNX1)
° Variant 1	FLT3	
c.1786_1787insGGGCGAAAGAGTACTTCTACGTTGA _Glu596insGlyAlaLysGluTyrPheTyrValAspPheArg) - 33	c.1786_1787insGGGCGAAAGAGTACTTCTACGTTGATTTCA	
	_Glu596insGlyAlaLysGluTyrPheTyrValAspPheArg) - 33%	FLT3 mutated: sensitive for FLT3-inhibitors
° Variant 2 SRSF2 c.284C>T; p.(Pro95Leu) - 19%	SRSF2	standard CT + midostaurin
	c.284C>T; p.(Pro95Leu) - 19%	
		Associated with adverse prognosis
° Vermoedelijk pathog. variant 1		
° Variant 1 RUNX1 c.496C>T; p.(Arg166Ter) - 38	RUNX1	Allo-SCT
	c.496C>T; p.(Arg166Ter) - 38%	WT1 overexpression
		MRD monitoring

References

UZ⁄I

- The 5th edition of the WHO classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. *Khoury et al. Leukemia 2022*
- The 5th edition of the WHO classification of haematolymphoid tumours: Lymphoid neoplasms. *Alaggio et al. Leukemia 2022*
- International Consensus Classification of myeloid neoplasms and acute leukemia: integrating morphologic clinical and genomic data. *Arber et al. Blood 2022*
- Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia. *Duncavage et al. Blood 2022*
- Diagnosis and management of AML in adults: recommendations from an international expert panel on behalf of the ELN. *Döhner et al. Blood 2022*
- Molecular testing for acute myeloid leukemia. *Qin et al. Cancer Bio Med 2022*
- Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. *Schuurhuis et al. Blood 2018*
- Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia A Europe Against Cancer Program. *Gabert et al. Leukemia 2003*
- The role of targeted therapy in the management of patients with AML, Perl et al Blood Advances 2017
- <u>https://www.compermed.be</u>

