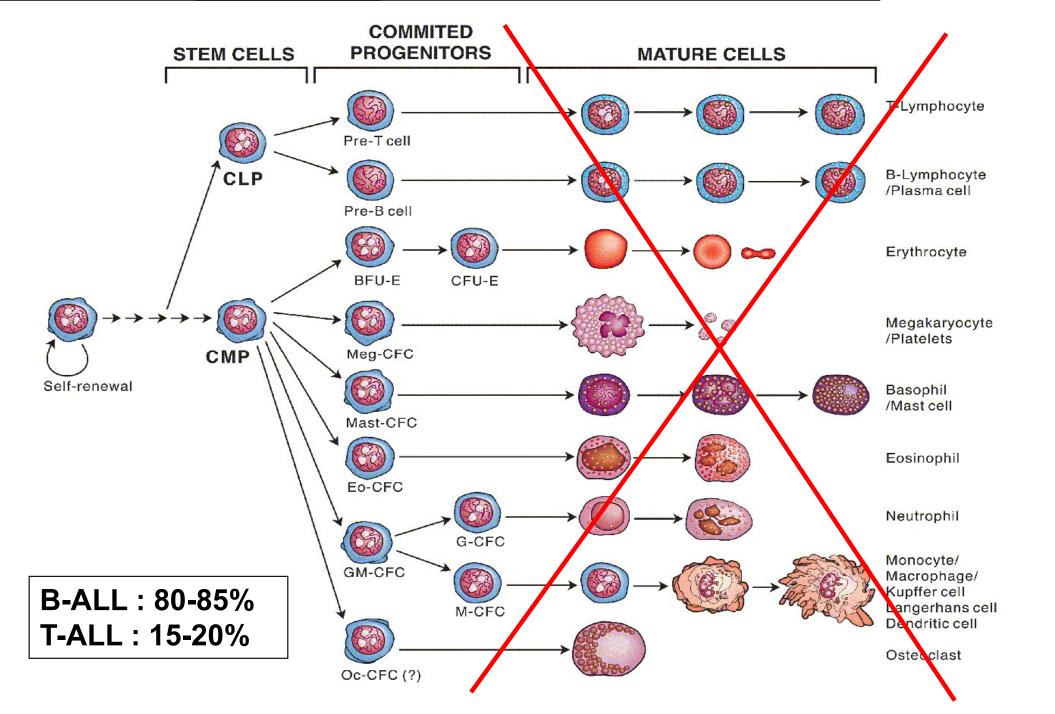
# Acute Lymphoblastic Leukemia in Adults

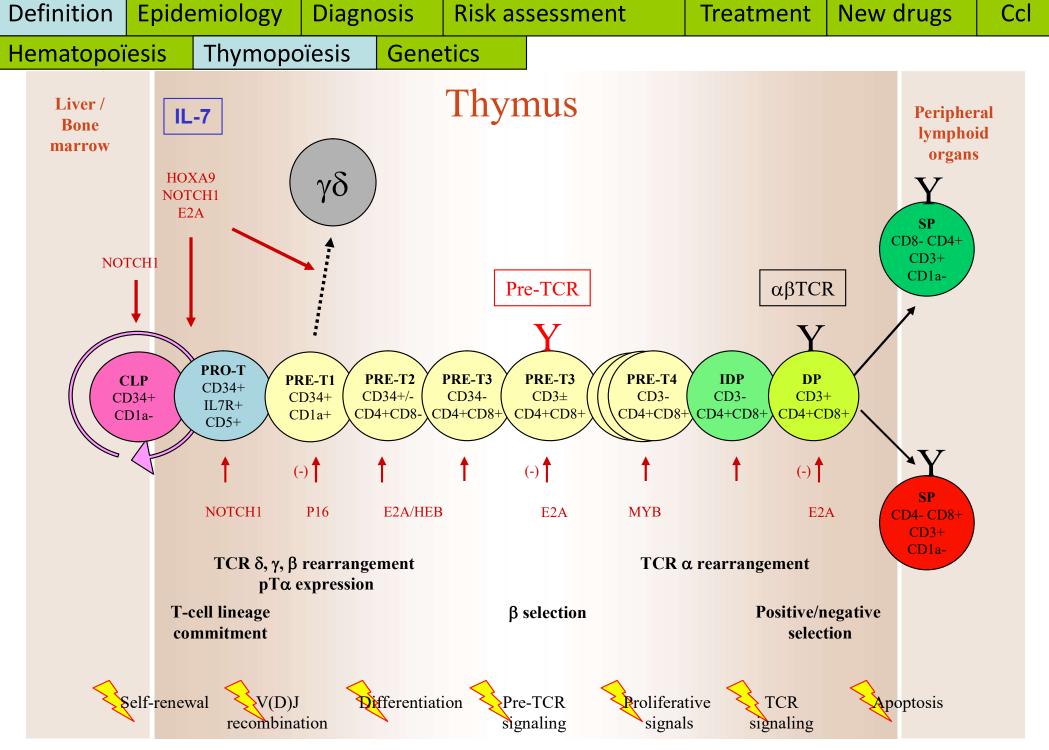
BHS Training Course on Acute Leukemia

**Pr Carlos Graux**CHU UCL Namur -Godinne

Saturday december 16th, 2023



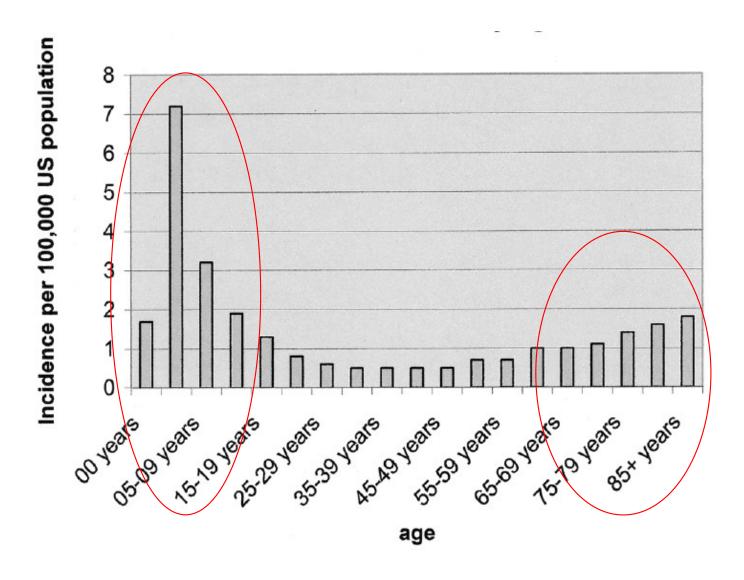



| 8 | 3h30         | 8h45  | Introduction                                                         | Chairman                         |
|---|--------------|-------|----------------------------------------------------------------------|----------------------------------|
|   |              |       |                                                                      |                                  |
|   |              |       |                                                                      | Dimitri BREEMS                   |
|   | 3h45         | 9h30  | AML : WHO classification, biology and prognosis                      | (ZiekenhuisNetwerk<br>Antwerpen) |
|   | 01145        | 91130 | AIVIL . WITO classification, biology and prognosis                   | Antwerpen                        |
|   |              |       |                                                                      | Koen Theunissen                  |
|   | 9h3 <b>0</b> | 10h15 | AML - treatment for fit and unfit patients                           | (Jessa Ziekenhuis)               |
|   |              |       |                                                                      |                                  |
|   |              |       |                                                                      |                                  |
|   |              |       |                                                                      | Adrien DE VOEGHT                 |
|   | l0h15        | 10h30 | Brief discussion for infectious prophylaxis in the setting of VenAZA | (CHU Liège)                      |
| , | l0h30        | 10h45 | Break                                                                |                                  |
|   |              |       |                                                                      |                                  |
|   |              |       |                                                                      |                                  |
|   |              |       |                                                                      |                                  |
|   |              |       |                                                                      | Wittnebel Sebastian              |
|   | l0h45        | 11h30 | APL treatment                                                        | (HUB Institute Jules Bordert)    |
|   |              |       |                                                                      |                                  |
|   |              |       |                                                                      | Carlos Graux                     |
|   | 11h30        | 12h15 | ALL from Biology to the treatment                                    | (CHU UCL Namur- Godinne)         |
|   |              |       |                                                                      | (                                |
|   |              |       |                                                                      |                                  |
|   |              |       |                                                                      | Barbara De Moerloose             |
|   | l2h15        | 13h   | Acute leukemia and agressive lymphoma in children                    | (UZ Ghent)                       |
|   | 3h           | 13h15 | End of the session                                                   | chairman                         |

Definition | Epidemiology | Diagnosis | Risk assessment | Treatment | New drugs | Ccl

Hematopoïesis Thymopoïesis Genetics Multistep leukemogenesis

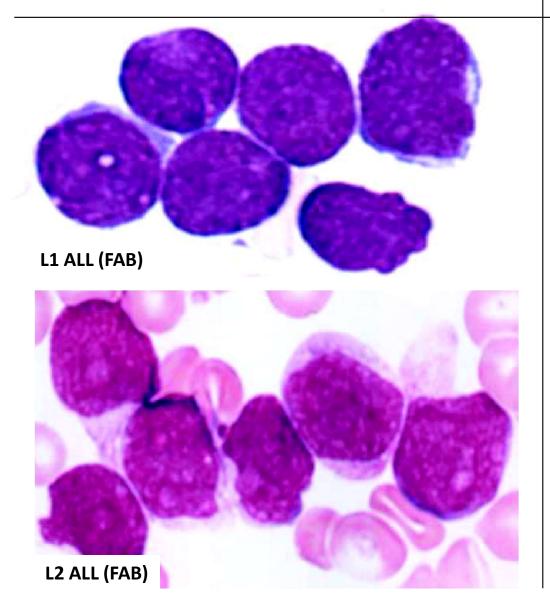


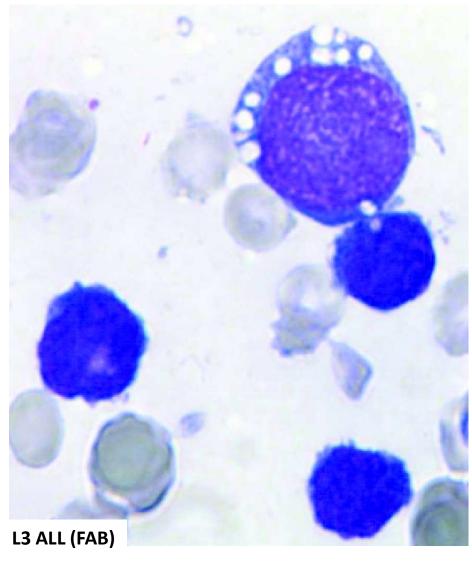



Graux C. et al Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast Leukemia 2006

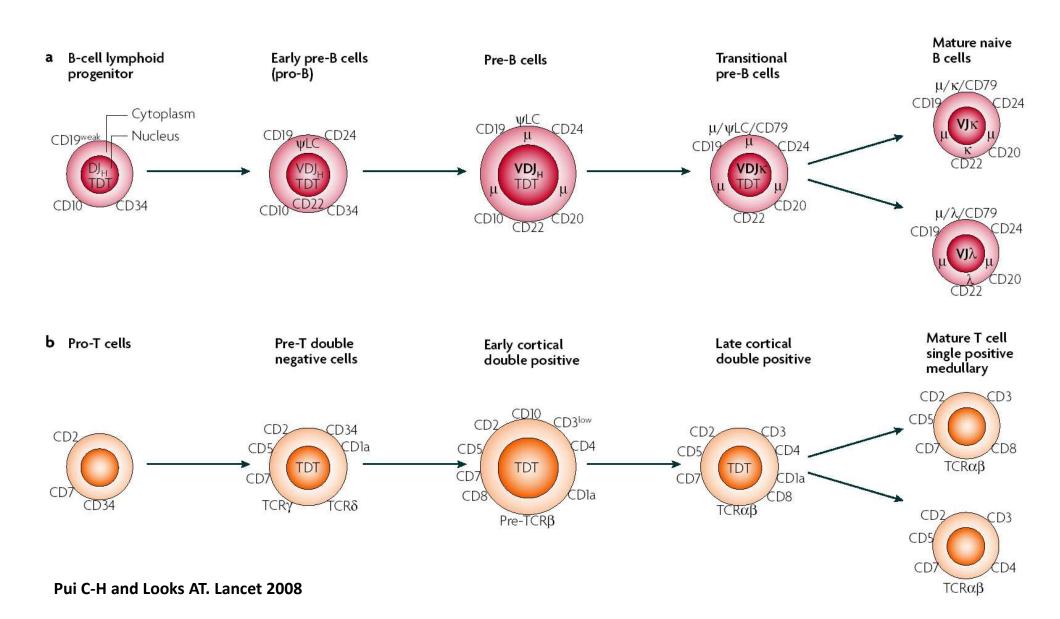
Epidemiology Diagnosis Treatment Definition Risk assessment New drugs Ccl Thymopoïesis Hematopoïesis Genetics **Chromosomal rearrangements involving**  $TCR \rightarrow activation of transcription factors (TCR<math>\alpha\delta/14g11 \text{ or } TCR3/7g34)$  $t(7;10)(q34;q24), t(10;14)(q24;q11) \rightarrow TLX1 (HOX11) (7\%/31\%)$ \* t(5;14)(q35;q32) (cryptic) → TLX3 (HOX11L2) (20%/13%) \* BCL11B /14q32 inv(7)(p15q34) (cryptic)  $\rightarrow$  **HOXA** (3%)  $t(1;14)(p32;q11) \rightarrow TAL1 (3\%)$  $t(7;19)(q34;p13) \rightarrow LYL1 (<1\%)$  $t(11;14)(p15;q11) \rightarrow LMO1 (2\%)$ t(11;14)(p13;q11) and  $t(7;11)(q35;p13) \rightarrow LMO2$  (3%) **TCR** Gene?  $t(7;9)(q34;q34.3) \rightarrow NOTCH1 (<1\%)$  $t(6;7)(q23;q24) \rightarrow MYB (<1\%)$ Formation of fusion genes 1p32 deletion → *SIL-TAL1* (9-30%) t(10;11)(p13;q14) (often cryptic )  $\rightarrow$  **CALM-AF10** (10%)  $t(11;?)(q23;?) \rightarrow MLL-? (4-8\%)$ t(9;9)(q34;q34) (most often on amplified episomes)  $\rightarrow$  **NUP214-ABL1** (6%) Gene a Gene b (Cryptic) deletions 9p21 → loss of **P16 (CDKN2A)** (65%)  $del(6q) \rightarrow ?$ **Duplications** 6q23.3 **→ MYB** 9q34 → ABL1, VAV2, TRAF2, NOTCH1 ? (Activating or inactivating) mutations 60 70 80 CGCATG TG CTG AAAGTTG GCGGTG CCG AG TGCGC T NOTCH1, PTEN, FBXW1, FLT3, N -RAS, JAK1 **Aneuploidy** 

## **Age-specific incidence of ALL**





Definition | Epidemiology | Diagnosis | Risk assessment | Treatment | New drugs | Ccl

Morphology Immunophenotyping


# Common type lymphoblasts from Precursor B or T-cell acute lymphoblastic leukemia (WHO)

Burkitt's lymphoblasts from Burkitt's lymphoma (WHO)





# **Immunophenotyping**



Morphology

Immunophenotyping

# **GEIL/EGIL Scoring system**

| Points | B lineage | T lineage | Myeloid     |  |
|--------|-----------|-----------|-------------|--|
|        |           |           | lineage     |  |
| 2      | CD79      | CD3       | MPO         |  |
|        | сµ        | TCR       | (lysozyme)  |  |
|        | cCD22     |           |             |  |
| 1      | CD19      | CD2       | <b>CD13</b> |  |
|        | CD10      | CD5       | CD33        |  |
|        | CD20      | CD8       | CD65        |  |
|        |           | CD10      | CD117       |  |
| 0.5    | TdT       | TdT       | CD14        |  |
|        | CD24      | CD7       | CD15        |  |
|        |           | CD1a      | CD64        |  |

Morphology

Immunophenotyping

## **GEIL/EGIL** classification of B-cell ALL

|             | cCD79/CD19/CD22 (s ou c) | CD10 | C-µ      | slg |
|-------------|--------------------------|------|----------|-----|
| B1          | +                        |      | •        | •   |
| <b>B2</b>   | +                        | +    | •        | •   |
| <b>B3</b>   | +                        | +/-  | <b>+</b> | •   |
| <b>B4</b> * | +                        | +/-  | +/-      | +   |

B1 = pro-B-ALL, B2 = Common B-ALL, B3 = pre-B-ALL, B4 = mature B-ALL

<sup>\*</sup> B4 = Burkitt's leukemia/lymphoma

Morphology

Immunophenotyping

## **GEIL/EGIL classification of T-cell ALL**

|             | cCD3 | CD7 | CD2/CD5/ | CD1a | sCD3/CD1a- |
|-------------|------|-----|----------|------|------------|
|             |      |     | CD8      |      |            |
| <b>T1</b> * | +    | +   | •        | •    |            |
| <b>T2</b> * | +    | +   | +        | •    | •          |
| <b>T3</b>   | +    | +   | +        | +    |            |
| <b>T4</b>   | +    | +   | +        | -    | +          |

T1= Pro-T-ALL, T2= Pre-T-ALL, T3= cortical T-ALL, T4= mature T-ALL

<sup>\*</sup> T1 and T2 = ETP ALL (early T cell precursor ALL)

# Relevance of immunophenotyping

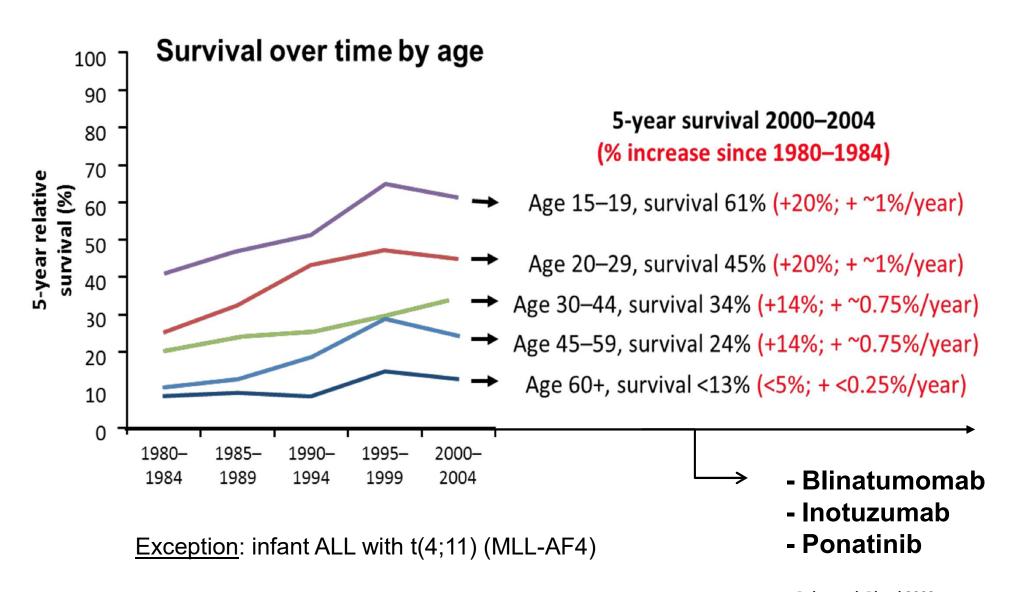
**Diagnosis** of B-ALL/T-ALL/bi-phenotypic AL

## Specific therapy

- Identifying mature B-cell ALL (Burkitt's ALL)
- Some surface markers are potential targets for antibody therapy and for other innovative therapies (CD19, CD20, CD22, CD52, ...)
- In most cases minimal residual disease can be assessed by flow cytometry (especially when leukemic lymphoblast express aberrant antigens)

## Risk assessment

Balance between the risk of relapse and the risk related to the toxicity of the treatment


#### Takes into account:

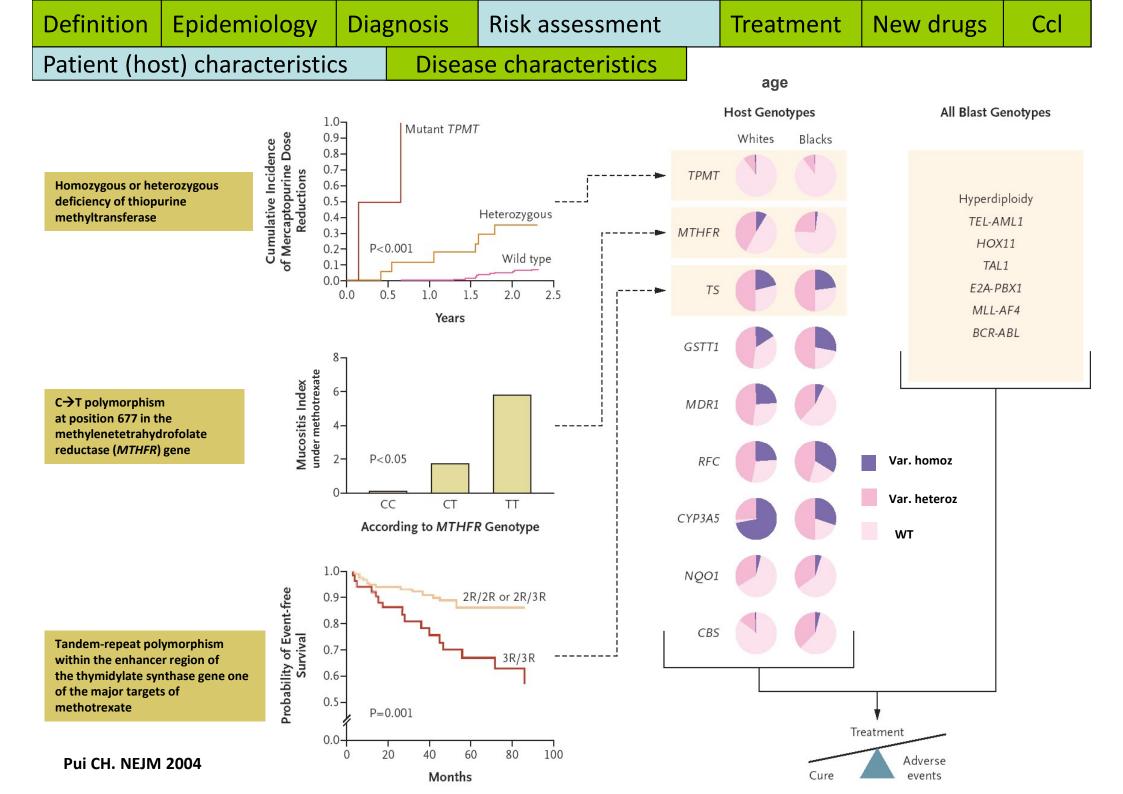
- patient (host) characteristics
  - age (comorbidity), social situation (compliance), general condition,...
  - Specific pharmacodynamics, pharmacogenetics
- disease characteristics
  - clinical prognostic features
  - genetics (chromosomal/gene abnormalities, MDR genes expression, gene expression profiling, ...)
- → selecting therapy that will avoid excessive toxicity but maintain a high cure rate

Patient (host) characteristics

Disease characteristics

## Age




# Pharmacodynamics/genetics

Polymorphisms in genes that encode drug-metabolizing enzymes, transporters, receptors, and drug targets

- → wide differences in terms of drug disposition and pharmacologic effects
- → influence toxicity and efficacy of chemotherapy
- Drug interactions!

Phenytoin, phenobarbital, carbamazepine

- → induce the production of cytochrome P-450 enzymes
- → increase the systemic clearance of antileukemic agents
- → adversely affect treatment outcome
- !!! Azole antifungal drugs (V-Fend®, Noxafil®, ....) and vinca alkaloids, corticoids



## **Clinical features**

- Leukocyte count
  - $> 30.000/\mu L (B-ALL)$
  - $> 100.000/\mu L (T-ALL)$
- Extramedullary disease
- High LDH level,
- Low Hgb level, low platelet count
- CNS involvement

Negatively impact on prognostic

Definition | Epidemiology | Diagnosis | Risk assessment | Treatment | New drugs | Ccl

Patient (host) characteristics

Disease characteristics

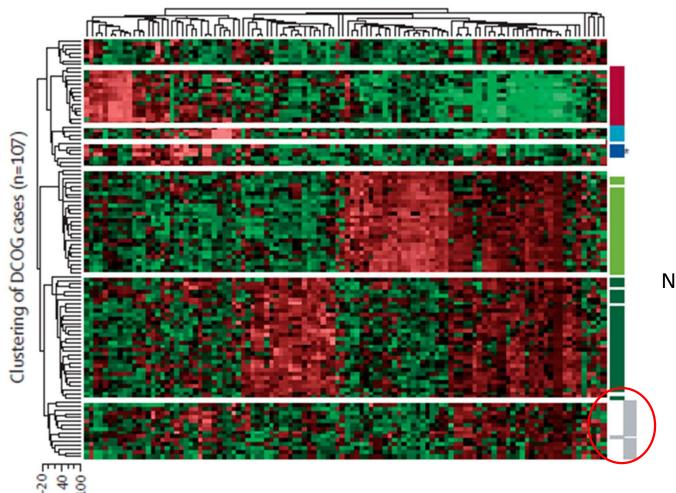
# **Cytogenetics**

| 3-cell precursor ALL                                                          |                                                                                   |                                                |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------|
| Favorable features                                                            |                                                                                   |                                                |
| - <b>hyperdiploidy</b> (> 50 chromosomes)                                     |                                                                                   | HD MTX                                         |
| - †(12;21) → TEL-AML1                                                         | in 30 % of childhood cases in 5 % of adult cases                                  | Intensive- Asparaginase                        |
| - <b>†(1;19) → E2A-PBX1</b><br>(CD34-, CD20-)                                 | outcome depends on treatment used                                                 | Intensive                                      |
| - trisomy 4, 10, 17                                                           | in children                                                                       |                                                |
| Unfavorable features:                                                         |                                                                                   |                                                |
| - hypodiploidy (< 45 chromosomes)                                             | < 2 % of pediatric or adult cases                                                 |                                                |
| - <b>†(4;11)</b> → <i>MLL-AF4</i><br>(CD10-, CD19+, CD15+)                    | +/- 50 % of cases in infants 2 % of cases in children 5 to 6 % of cases in adults | HD Ara-C                                       |
| - <b>t(9;22) → BCR-ABL1</b> (p190 or p210)<br>(CD34+, myeloid antigens, CD25) | 3 % in children<br>20 % in adults<br>50 % in patients older than 50 years         | Glivec/ new TKI                                |
| -cell precursor ALL                                                           |                                                                                   | HD MTX, Ara-C, cyclophosphamide                |
| Favorable features:                                                           |                                                                                   |                                                |
| - t(7;10) and t(10;14) → HOX11 (TLX1)<br>(CD10+/-, CD1a+)                     |                                                                                   |                                                |
| - †(11;19) → MLL-ENL                                                          |                                                                                   |                                                |
| <u>Unfavorable features:</u>                                                  |                                                                                   |                                                |
| - t(5;14) (cryptic) → HOX11L2                                                 |                                                                                   | Controversial Impact of NUP214-ABL1 expression |

# Large scale genome analysis : GEP/CNA/WES, WTS, WGS

- Reveals new subtypes of ALL
  - ex: the BCR-ABL1 like subtype (Ph-like subtype)
    - → poor prognostic sub-group
    - → targetable underlying "mutations"

ex: EBF1-PDGFRB


- Identifies genes
  - whose expression/deletion may have prognostic significance
    - IKZF1 deletions, CRLF2 rearrangements, TP53 mutations in B-ALL
       → poor prognosis
    - ERG-deregulations in B-ALL → favorable
    - NOTCH1 signaling mutated in T-ALL → good prognosis
       (used to stratify the risk in the current therapeutic GRAALL protocol)

Patient (host) characteristics

Disease characteristics

#### **Dutch study: non-selected cohort, n=507**

Subtype predictive gene-probe sets (n=110)



Gene expression profile similar to

Ph+ ALL

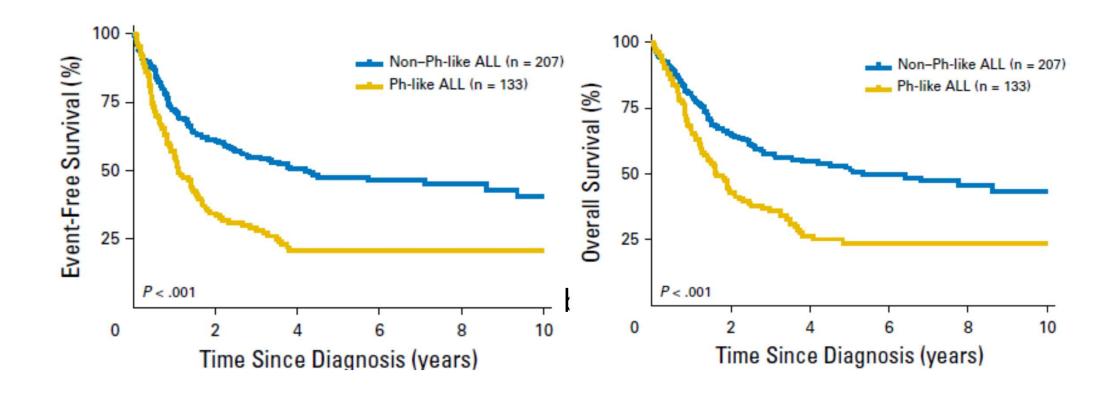
No Ph chromosome no BCR-ABL1

« Pro-B » signature

IKZF1 alterations (70-80%)

Negative for most recurrent genetic abnormalities

=


## « Ph-like » ALL

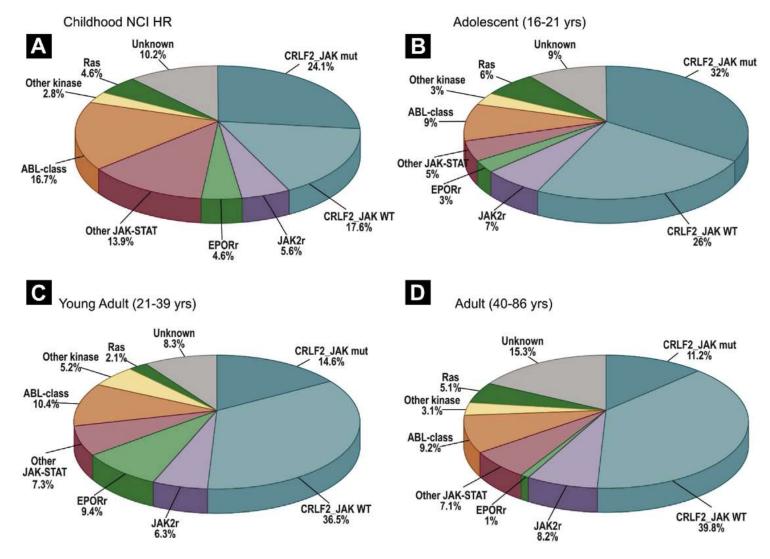
(+/- 15% of B-ALL)

Patient (host) characteristics

Disease characteristics

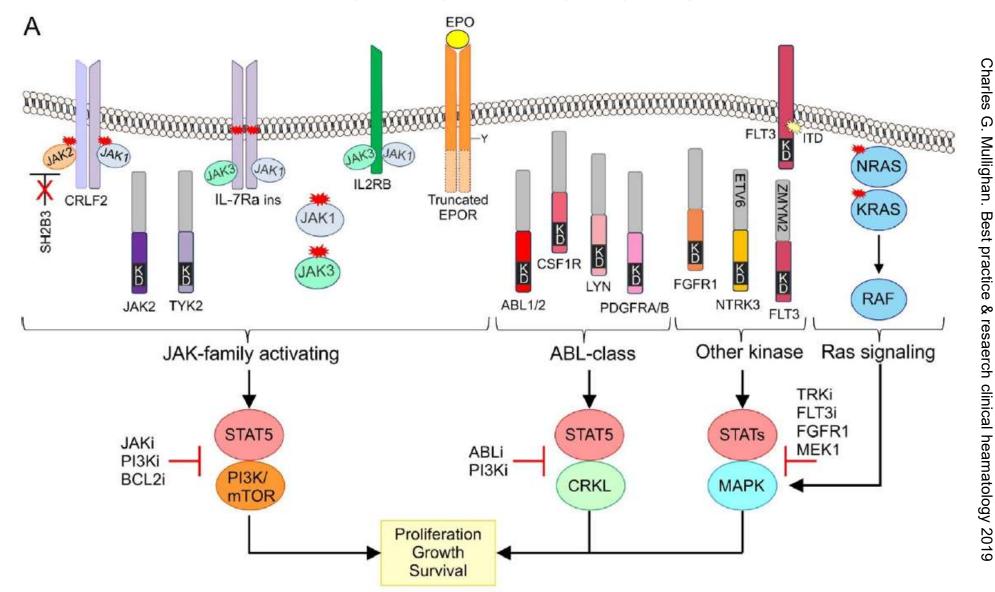
#### « Ph-like » ALL




Less MRD < 0,01% (47% vs 94%; *P* = .002)

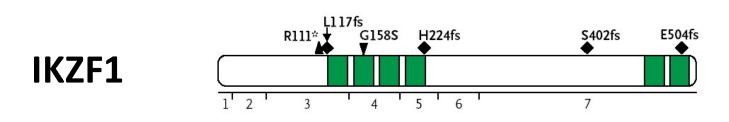
Definition | Epidemiology | Diagnosis | Risk assessment | Treatment | New drugs | Ccl

Patient (host) characteristics


Disease characteristics

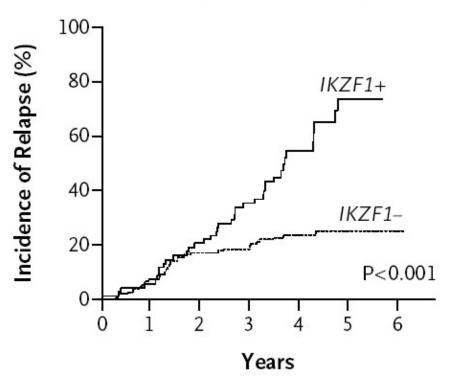
## « Ph-like » ALL




→ Multiple cytokine receptor and kinase activating lesions

## Kinase alterations and signaling pathways dysregulated in Ph-like ALL




The majority of kinase and cytokine receptor alterations converge on two pathways that activate JAK-family member signaling or ABL-signaling:

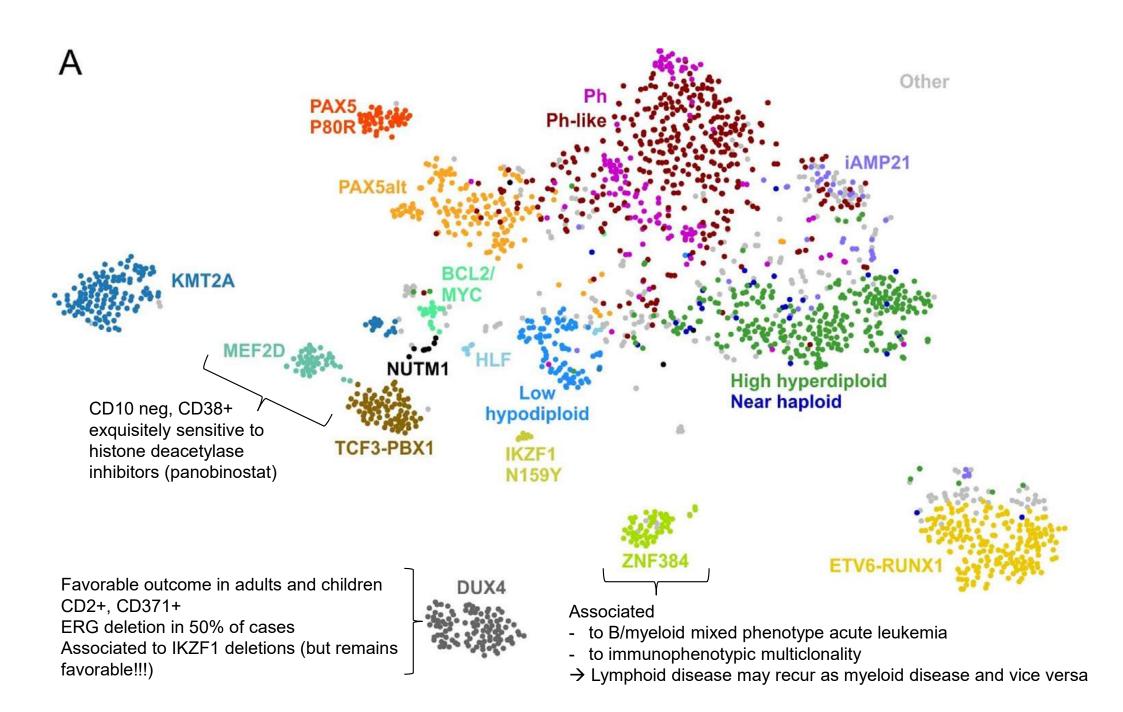
- alterations that activate JAK-STAT signaling can be targeted with JAK and PI3K inhibitors.
- ABL-class alterations can be targeted with ABL-inhibitors such as dasatinib.
- other kinase alterations and those that activate Ras signaling can be targeted with specific inhibitors including those that inactivate TRK, FLT3, FGFR1, and MEK for the MAPK pathway.



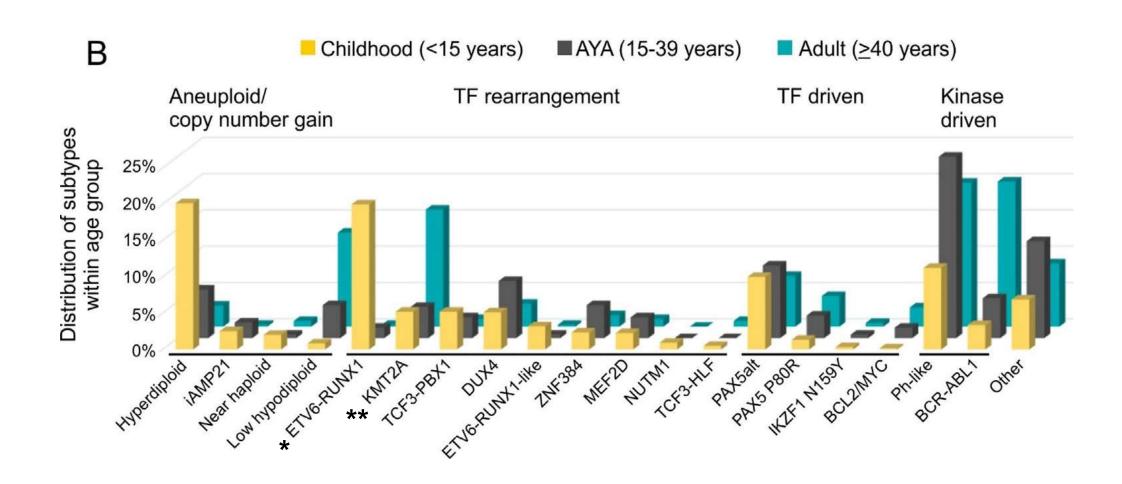
Missense mutations Frameshift mutations Splice-site mutations Intragenic deletion

#### IKZF1 Deletion or Mutation




High risk based on:
CNS or testicular disease,
MLL gene rearrangement, or
age, sex, leukocyte count
Excluded: BCR-ABL1+, infant, hypodiploid ALL

#### Prevalence and prognosis of subtypes in B-ALL based on WTS analysis of 1988 ALL cases


| ALL subtype                         | Category         | Median age<br>(yrs) | Peak prevalence                                | Genomic alterations                                                                       | Clinical features                              | Therapy                                           |
|-------------------------------------|------------------|---------------------|------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------|
| Hyperdiploid (> 50 chromosomes)     | Aneuploid        | 4                   | Children (25%)                                 | Ras pathway,<br>epigenetic modifiers                                                      | Excellent prognosis                            | Reduce intensity                                  |
| Low hypodiploid (31–39 chromosomes) | Aneuploid        | 47                  | Adults (10–15%)                                | IKZF2 deletion, TP53 mutation (commonly inherited)                                        | Poor prognosis                                 | BCL2 inhibitors                                   |
| Near haploid (24–30 chromosomes)    | Aneuploid        | 5.4                 | < 3% in all ages                               | Ras pathway,<br>IKZF3 deletion                                                            | Intermediate prognosis                         | BCL2 inhibitors                                   |
| iAMP21                              | Copy number gain | 10                  | ~3% in children and AYA                        | Complex structural alterations of chromosome 21                                           | Good prognosis with intensive therapy, low WBC |                                                   |
| ETV6-RUNX1 t (12; 21) (p13; q22)    | TF rearrangement | 4                   | Children (25%)                                 | PAX5 deletion, WHSC1 mutation                                                             | Excellent prognosis                            | Reduce intensity                                  |
| ETV6-RUNX1-like                     | TF rearrangement | 3                   | Children (3%)                                  | ETV6 fusions and deletion, IKZF1 fusions and deletion                                     | Unknown                                        | Reduce intensity                                  |
| DUX4-rearranged                     | TF rearrangement | 14.3                | AYA (~8%)                                      | ERG deletion, IKZF1 deletion, Ras pathway                                                 | Excellent prognosis                            | Reduce intensity                                  |
| KMT2A-rearranged                    | TF rearrangement | 40                  | Infants ( $\sim$ 90%) and adults ( $\sim$ 15%) | Ras pathway (commonly subclonal)                                                          | Poor prognosis                                 | Bortezomib, DOT1L inhibitors,<br>Menin inhibition |
| TCF3-PBX1 t (1: 19) (q23; p13)      | TF rearrangement | 8                   | Children (5%)                                  |                                                                                           | Good prognosis, CNS relapse                    |                                                   |
| ZNF384-rearranged                   | TF rearrangement | 15                  | AYA (~5%)                                      | Epigenetic modifiers,<br>Ras pathway                                                      | Intermediate prognosis                         | FLT3 inhibition                                   |
| MEF2D-rearranged                    | TF rearrangement | 14                  | AYA (~7%)                                      | Ras pathway                                                                               | Intermediate prognosis,                        | HDAC inhibition                                   |
| NUTM1-rearranged                    | TF rearrangement | 3                   | Children (1%)                                  | Unknown                                                                                   | Excellent prognosis                            | Bromodomain inhibitors                            |
| TCF3-HLF t (17; 19) (q22; p13)      | TF rearrangement | 15                  | Rare rare in all ages (< 1%)                   | TCF3 mutation, PAX5 deletion, Ras pathway                                                 | Very poor prognosis,                           | BCL2 inhibitors                                   |
| PAX5alt                             | Other TF driven  | 10                  | Children (~11%)                                | PAX5 fusion, mutation, amplification                                                      | Intermediate prognosis                         |                                                   |
| PAX5 P80R                           | Other TF driven  | 22                  | Adults (~4%)                                   | Ras pathway                                                                               | Intermediate prognosis                         |                                                   |
| IKZF1 N159Y                         | Other TF driven  |                     | Rare in all ages (< 1%)                        | Unknown                                                                                   | Unknown                                        | FAK inhibitors, rexinoids                         |
| BCL2/MYC-rearranged                 | Other TF driven  | 48                  | AYA and adults (~3%)                           | Unknown                                                                                   | Poor prognosis                                 |                                                   |
| Ph-like                             | Kinase driven    | 21                  | AYA (25–30%)                                   | Multiple kinase alterations, <i>IKZF1</i> deletion and mutation, <i>CDKN2A/B</i> deletion | Poor prognosis, amenable to<br>TKI therapy     | TKI, PI3Ki, BCL2 inhibitors                       |
| BCR-ABL1 t (9; 22) (q34; q11.2)     | Kinase driven    | 40–45               | Adults (40–50%)                                | IKZF1 deletion and mutation, CDKN2A/B deletion                                            | Prognosis improved with TKI                    | TKI, FAK inhibitors, rexinoids                    |
| Other                               |                  | 16                  | ~5% children, ~10%<br>AYA and adults           | Unknown                                                                                   | Intermediate prognosis                         |                                                   |

Gu Z, et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet 2019 Charles G. Mullighan. How advanced are we in targeting novel subtypes of ALL? Best practice & resaerch clinical heamatology 2019

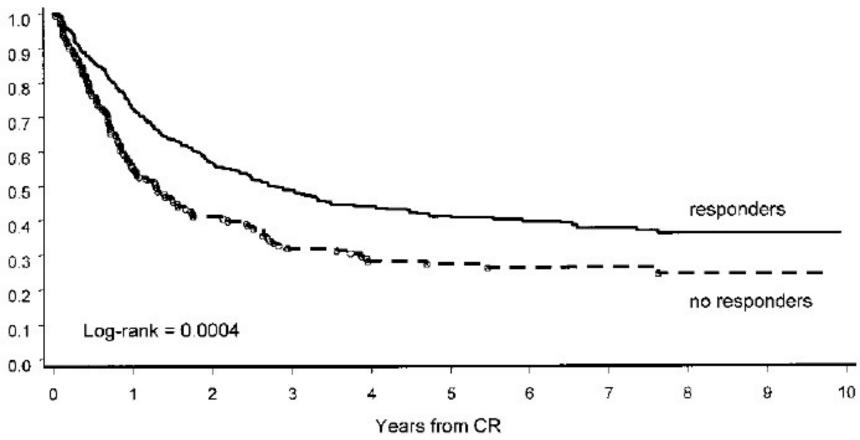
#### Major B-ALL subtypes based on gene expression profiling of 1988 cases



#### Distribution of B-ALL subtypes within each age group



<sup>\*</sup> ETV6 - RUNX1 = TEL - AML1


<sup>\*\*</sup> KMT2A = MLL

#### **Treatment**



| Definition | Epidemiolo | gy Diagnosi     | s Risk assessme | nt               | Treatment | New drugs     | Ccl    |
|------------|------------|-----------------|-----------------|------------------|-----------|---------------|--------|
| Prephase   | Induction  | Intensification | on Continuation | Continuation CNS |           | Specific situ | ations |





Steroid sensitivity (prednisone 60 mg daily for 7 days: blast cells should be less than  $1000/\mu L$  in peripheral blood by day 8)

| Definition Epidemiology |           | gy Diagnosi     | is Risk assessme | Risk assessment  |  | New drugs     | Ccl    |
|-------------------------|-----------|-----------------|------------------|------------------|--|---------------|--------|
| Prephase                | Induction | Intensification | on Continuation  | Continuation CNS |  | Specific situ | ations |

## **Remission induction therapy**

- Goal
  - to eradicate > 99 % of the initial burden of cells
    - to restore a normal hematopoiesis
    - to restore a normal performance status
- Always includes the administration of:
  - a glucocorticoid (prednisone, prednisolone, or dexamethasone),
  - vincristine,
  - and at least one other agent (usually asparaginase, an anthracycline, or both). Interest of cyclophosphamide in T-ALL.
- → complete remission rates of 96-99 % for children and 78-93 % for adults

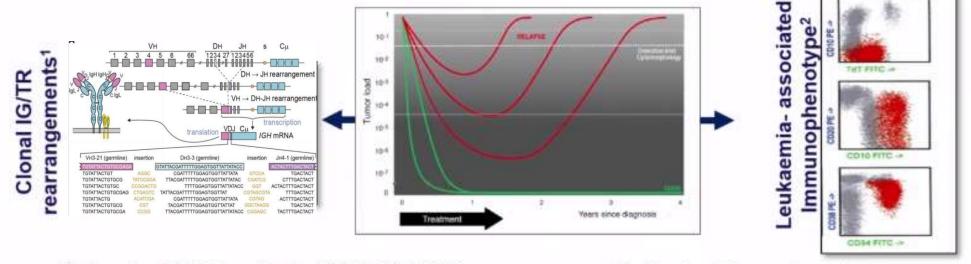
| Definition Epidemiology |           | Diagnosis       | Risk assessment |                  | Treatment | New drugs  | Ccl           |        |
|-------------------------|-----------|-----------------|-----------------|------------------|-----------|------------|---------------|--------|
| Prephase                | Induction | Intensification |                 | Continuation CNS |           | orevention | Specific situ | ations |

## Response to the induction

It **depends on** interconnected variables:

- the ability of individual patients to metabolize anti-leukemic drugs
- clinico-biological features of the disease
- chemotherapy dosages, schedule of administration & interactions

It is evaluated by the rate of clearance of leukemic cells (leukemia cytoreduction)


- that reflects the collective impact of the different variables
- evaluated by **morphology** at day 15 (insensitive)
- Better evaluated by the measure of the **minimal (mesurable) residual disease** (MRD) by molecular and flow cytometric methods at the end of induction (>100-fold more sensitivity)

MRD = most useful prognostic indicator  $\rightarrow$  adaptation of the R/ = independent from the presence of conventional risk factors (Bassan R et al Blood 2009)

- < 0.01 % (10-4) during or on completion of initial induction therapy

  or on completion of initial induction therapy
- > 1 % at the end of remission-induction therapy or  $\geq$  0.1 % at later times  $\rightarrow$  very high risk of relapse

## Techniques to measure MRD in ALL

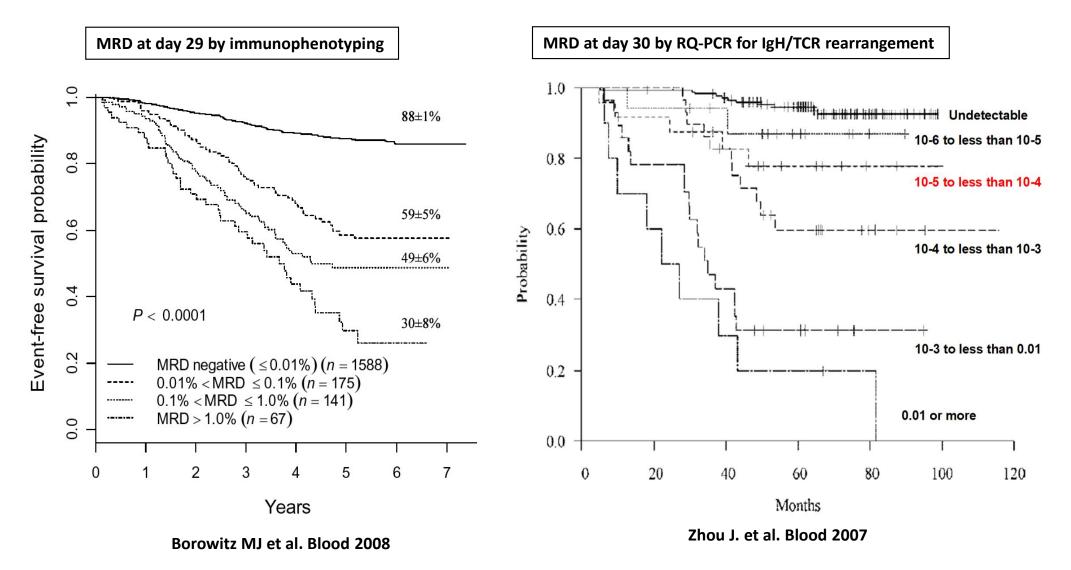


#### Molecular IG/TR analysis (ASO RQ-PCR)

#### **PROS**

- Sensitivity
- DNA based method (stability, shipment time)
- high degree of standardisation, published experience
- Time consuming

#### CONS -Clonal evolution phenomena


- need for patient specific reagents

#### Multicolor Flow cytometry

- Fast
- Additional information on background cells and leukemia characteristics
- Sensitivity
- Need for fresh material (max 48 hours)
- Standardisation ('medical art')
- Instability of markers

Extracted and adapted from 1. van Dongen JJM et al. Blood 2015;125:3996-4009 2. Lucio P et al. Leukemia. 2001;15:1185-92

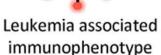
## Minimal residual disease



→ identify patients predicted to have superior outcome (**prognostic indicator**) who might be candidates for trials testing less intensive therapies (**individualization of the treatment**)

Definition Epidemiology New drugs Diagnosis Risk assessment Treatment Ccl

Patient (host) characteristics


Disease characteristics

#### **MRD**

## Consensus around 10-4 as the treshold for prognostication value NGS (ClonoSEQ)

Flow Cytometry







Aberrancy from normal



Ig/TCR clonotype (Genetic barcode)

Sensitivity of MRD by MPFC depends:

- on the presence of a LAIP or aberrant phenotype
- on the numbers of cells analysed (10-50 events with the same IT to define a unique population)
  - → 100000-500000 cells for 10-4 sensitivity
  - $\rightarrow$  1-5 x 10exp6 cells to reach 10-5 sensitivity

! time to run the assay

- 8-color tubes
- → next-generation flow cytometry (NGF) for 10-5 sensitivity

NGS can be used to monitor the Ig/TCR clonotype instead of ASO **RQ-PCR** 

Sensitivity of 10-6 or more

It challenges the pertinence of the 10-4 treshold

Opportunity to quantify MRD in the peripheral blood

Patient (host) characteristics

Disease characteristics

## Minimal residual disease: limitations

- MRD after immunotherapy has not the same value as the MRD after chemotherapy
  - immunoprivileged sites
  - mesure extrinsec factors more than intrinsec factors

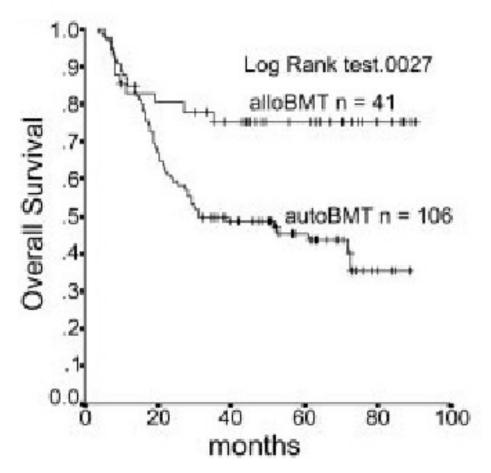
- MRD by MPFC can be difficult under immunotherapy (masked antigens)
- Lymphoblastic lymphoma without morphological invasion or minimal disseminated disease (MDD) in the bone marrow at the time of diagnosis

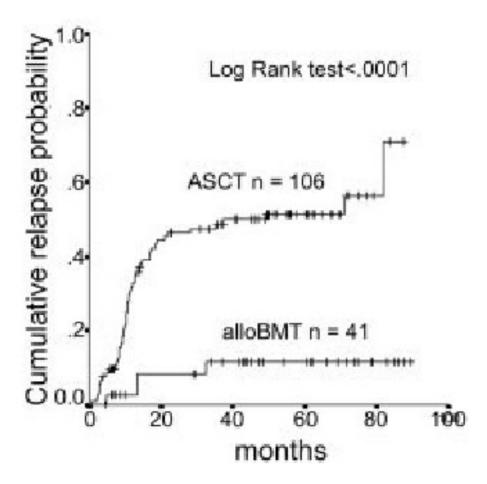
| Definition Epidemiology |                           | gy D | Diagnosis | Risk assessment |     | Treatment  | New drugs     | Ccl    |
|-------------------------|---------------------------|------|-----------|-----------------|-----|------------|---------------|--------|
| Prephase                | Induction Intensification |      | Maintena  | nce             | CNS | orevention | Specific situ | ations |

## Consolidation (intensification) / re-induction

- Goal
  - eradicate drug-resistant residual leukaemic cells
  - reduce risk of relapse
- No consensus on the best regimen and duration
  - Intensification :
    - high dose methotrexate (→ 5 gr/m²) + mercaptopurine
    - High dosis of cytarabine
  - Reinduction treatment :
    - essentially a repetition of the initial induction therapy :
      - frequent pulses of vincristine and corticosteroids
      - prolonged high doses of asparaginase
      - cytarabine, cyclophosphamide, anthracyclines (in adults)

| Definition | Epidemiolo | gy Diagnosis    | Risk assessmer | nt    | Treatment  | New drugs     | Ccl    |
|------------|------------|-----------------|----------------|-------|------------|---------------|--------|
| Prephase   | Induction  | Intensification | Maintenance    | CNS r | orevention | Specific situ | ations |


### Intensification - Allogeneic HSCT


- Ultimate form of treatment intensification
- TBI = standard backbone for myeloablative conditioning in adults with ALL
- 12 (8?) Gy TBI applied in 6 fractions in combination with cyclophosphamide
   (Cy) 2x 60 mg/kg/d
- Risk of relapse decreases with allogeneic HSCT but the concomitant TRMortality decreases the potential survival benefit
  - ! Also to long term TRMorbidity
- > 35 y, in Ph- ALL, improved outcome seen in patients who undergo a MUD allogeneic HST is progressively lost when using myeloablative regimen
- Reduced intensity conditionning (RIC) are more frequently based on chemotherapy than irradiation

| Definition | Epidemiolog | gy Diagnosis    | Risk assessmer  | nt | Treatment  | New drugs     | Ccl    |
|------------|-------------|-----------------|-----------------|----|------------|---------------|--------|
| Prephase   | Induction   | Intensification | Maintenance CNS |    | orevention | Specific situ | ations |

### When to propose allogeneic HSCT?

- Inadequate MRD response is the most commonly accepted factor for alloHSCT
  - = persistent MRD after induction (>10-3) or after the firsts blocs of consolidation (>10-4) or recurrent MRD at any time
- Allogeneic transplantation benefits some very-high-risk pediatric and adult patients
  - Clearly
    - Second remission (CR2)
  - Probably
    - BCR-ABL+ ALL (a least in adults)
    - t(4;11) ALL
    - IKZF1 deleted B-ALL
    - Low hypodiploïdy, near triploïdy, complex karyotype (≥ 5 abnormalities)
    - ETP-ALL
    - NOTCH1/FBXW7 unmutated T-ALL
    - NRAS/KRAS mutated T-ALL, PTEN altereted T-ALL?
  - Less clear
    - WBC > 30.000? >100.000 in T-ALL?
    - Refractory ALL?
    - CNS ALL?
- Among adults with high risk ALL,
  - long-term DFS of 30 to 40 % have been obtained with chemotherapy,
  - as compared with 45 to 75 % with allogeneic HCST
    - » Hunault M. et al. Blood 2004
    - » Thomas X. et al. J. Clin. Oncol.





#### Patient characteristics:

at least one of the following features

- >> 35 y or
- >B-ALL or
- >WBC > 30000 or
- > t(9;22) or t(4;11) or t(1;19) or
- > failure to achieve CR



if HLA identical sibling

→ Allo HSCT

If no HLA identical sibling or age > 50 Y

→ auto BMT

| Definition | Epidemiology [ |     | Diagnosis    | Risk assessmer | nt    | Treatment | New drugs     | Ccl    |
|------------|----------------|-----|--------------|----------------|-------|-----------|---------------|--------|
| Prephase   | Induction      | Int | ensification | Maintenance    | CNS p | revention | Specific situ | ations |

#### **Maintenance treatment**

- Non transplanted ALL patients generally require prolonged maintenance
  - for two years or more
- The base of most continuation regimens is a combination of
  - mercaptopurine given daily
  - methotrexate administered weekly
  - Vinca alcaloïds (once) + corticoïds (1 week) given monthly (during the 1ste year)
- Accumulation of increased intracellular concentrations of the active metabolites of methotrexate and mercaptopurine, and administration of this combination to the limits of tolerance, have been associated with improved clinical outcome
- The identification of inherited deficiency of **thiopurine-S-methyltransferase** among patients with hematopoietic toxic effects allows the clinician to lower the dose of mercaptopurine selectively without modifying the dose of methotrexate

| Definition | Epidemiolo | gy Diagnosis   | s Risk assessme | Risk assessment    |  | New drugs     | Ccl    |
|------------|------------|----------------|-----------------|--------------------|--|---------------|--------|
| Prephase   | Induction  | Intensificatio | on Continuation | Continuation CNS p |  | Specific situ | ations |

### **CNS** prevention treatment

- CNS = sanctuary site → CNS relapses
- Factors associated with an increased risk of CNS relapse include:
  - high risk genetic features,
  - T-cell immunophenotype,
  - a large leukemia-cell burden: hyperleukocytosis, extramedullary disease
  - presence of leukemia cells in the cerebrospinal fluid (even from iatrogenic introduction through a traumatic lumbar puncture)

#### Based on:

- cranial irradiation (second cancers, late neurocognitive deficits, and endocrinopathy, ...) ... now avoided in most pediatric protocols
- largely been replaced by
  - intrathecal therapy: methotrexate, cytarabine, corticoïds
     ! traumatic lumbar punctures
  - systemic chemotherapy: HD methotrexate, HD cytarabine, dexamethasone

| Definition | Epidemiology Dia |      | Diagnosis    | Risk assessme      | nt | Treatment | New drugs     | Ccl    |
|------------|------------------|------|--------------|--------------------|----|-----------|---------------|--------|
| Prephase   | Induction        | Inte | ensification | Continuation CNS p |    | revention | Specific situ | ations |

#### **CNS+ ALL**

### At diagnosis

- > 5 WBC/ $\mu$ L with typical morphology (FCM)
- Incidence: +/- 7%
- Treatment (not standardized):
  - intrathecal drug(s) twice weekly until clearance of blast cells
  - +"intensive" systemic (HD methotrexate, ..., TBI before alloHSCT)
  - CNS irradiation
- 2-10% of relapses restrected to the CNS
  - outcome depends on the duration of remission,
  - T-cell ALL or prior cranial irradiation are bad factors

| Definition | Epidemiology  |  | Diagnosis    | iagnosis Risk assessmer |       | Treatment | New drugs     | Ccl    |
|------------|---------------|--|--------------|-------------------------|-------|-----------|---------------|--------|
| Prephase   | Induction Int |  | ensification | Continuation            | CNS p | revention | Specific situ | ations |

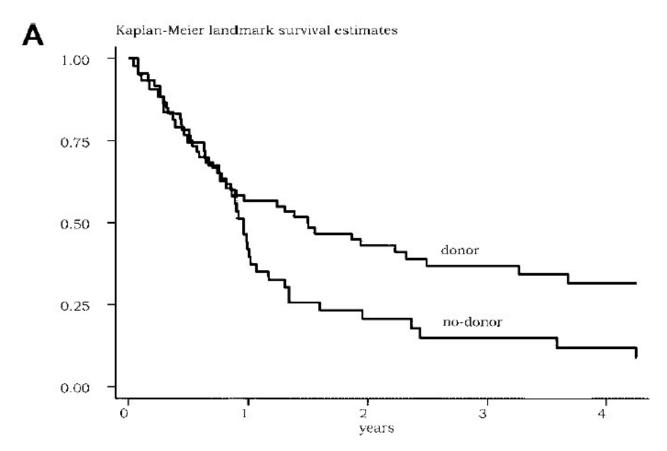
### Ph+ ALL

#### **Before imatinib**

- Allogeneic HSCT conferred similar OS and relapse rates for Ph+ patients compared with those with normal cytogenetics supporting a graft-versus-leukemia (GVL) effect
  - » Doney K, Biol Blood Marrow Transplant. 2003;9:472-481

- but
  - The incidence of Ph+ ALL increases with age (+/- 50% at 50 y, ...)
  - Availability of a donor
  - Low rate of remission
  - Relapse before transplantation

#### With imatinib


- Given during induction → CR rate increase from approximately 60% to >90% → more HSCT
- Given after transplantion (preemptive or preventive) → decreases relapse rate
- → Imatinib + conventional chemotherapy provided results comparable with allogeneic HSCT

  » de Labarthe A, Blood 2007
  - but clinical resistance to imatinib develops
  - kinase domain mutations of BCR-ABL1 give rise to relapse (! T315I BCR-ABL1 mutation)
    - » Pfeifer H, Blood 2007
- → Still recommended to proceed to HSCT in adults Ph+ ALL whenever possible

New TKI: dasatinib, ponatinib (active against the T315I BCR-ABL1 mutation)

| D | efinition | Epidemiology  |  | Diagnosis    | iagnosis Risk assessmer |       | Treatment | New drugs     | Ccl    |
|---|-----------|---------------|--|--------------|-------------------------|-------|-----------|---------------|--------|
| Р | rephase   | Induction Int |  | ensification | Continuation            | CNS p | revention | Specific situ | ations |





| Definition | Epidemiolo | gy Diagnosis    | iagnosis Risk assessmen |       | Treatment | New drugs     | Ccl    |
|------------|------------|-----------------|-------------------------|-------|-----------|---------------|--------|
| Prephase   | Induction  | Intensification | Continuation            | CNS p | revention | Specific situ | ations |

Table 4 Published frontline trials of TKI-based regimens in adult Ph-positive ALL

| TKI           | Ν        | Median age,<br>years [range] | CR rate, % | Induction<br>mortality, % | Overall CMR rate, % | HSCT rate, % | RFS rate, %     | OS rate, %  |
|---------------|----------|------------------------------|------------|---------------------------|---------------------|--------------|-----------------|-------------|
| Intensive che | mother   | apy + TKI                    |            |                           |                     |              |                 |             |
| Imatinib      | 54       | 51 [17-84]                   | 93         | 2                         | 45                  | 30           | 43 (5-year)     | 43 (5-year) |
| Imatinib      | 169      | 42 [16-64]                   | 92         | 5                         | NR                  | 72           | 50 (4-year)     | 38 (4-year) |
| Dasatinib     | 72       | 55 [21-80]                   | 96         | 4                         | 60                  | 17           | 44 (5-year)     | 46 (5-year) |
| Nilotinib     | 90       | 47 [ <b>1</b> 7-71]          | 91         | 9                         | 86                  | 70           | 72 (2-year)     | 72 (2-year) |
| Ponatinib     | 86       | 46 [21-80]                   | 100        | 0                         | 86                  | 21           | 84 (3-year)     | 78 (3-year) |
| Lower-intens  | ity cher | motherapy + TKI              |            |                           |                     |              |                 |             |
| Imatinib      | 135      | 49 [18-59]                   | 98         | 9                         | 28                  | 62           | EFS 37 (5-year) | 46 (5-year) |
| Dasatinib     | 71       | 69 [59-83]                   | 96         | 4                         | 24                  | 10           | EFS 28 (5-year) | 36 (5-year) |
| Dasatinib     | 60       | 42 [19-60]                   | 100        | 0                         | 19                  | 42           | 49 (3-year)     | 58 (3-year) |
| Nilotinib     | 79       | 65 [55-85]                   | 94         | 2                         | 58                  | 16           | 42 (4-year)     | 47 (4-year) |
| Nilotinib     | 60       | 47 [18-59]                   | 98         | 2                         | NR; MMR 80          | 52           | 85 (1-year)     | 96 (1-year) |
| Steroids + Th | (1)      |                              |            |                           |                     |              |                 |             |
| Imatinib      | 30       | 69 [61-83]                   | 100        | 0                         | 4                   | NR           | 48 (1-year)     | 74 (1-year) |
| Dasatinib     | 53       | 54 [24-77]                   | 100        | 0                         | 15                  | 34           | 51 (2-year)     | 69 (2-year) |
| Ponatinib     | 42       | 69 [27-85]                   | 95         | 0                         | 46                  | NR           | NR              | 88 (1-year) |
| Blinatumoma   | ab + TK  |                              |            |                           |                     |              |                 |             |
| Dasatinib     | 63       | 55 [24-82]                   | 97         | 2                         | 36                  | 19           | 88 (1-year)     | 95 (1-year) |

DefinitionEpidemiologyDiagnosisRisk assessmentTreatmentNew drugsCclPrephaseInductionIntensificationContinuationCNS preventionSpecific situations

### **Ph-like ALL**

#### molecular lesions



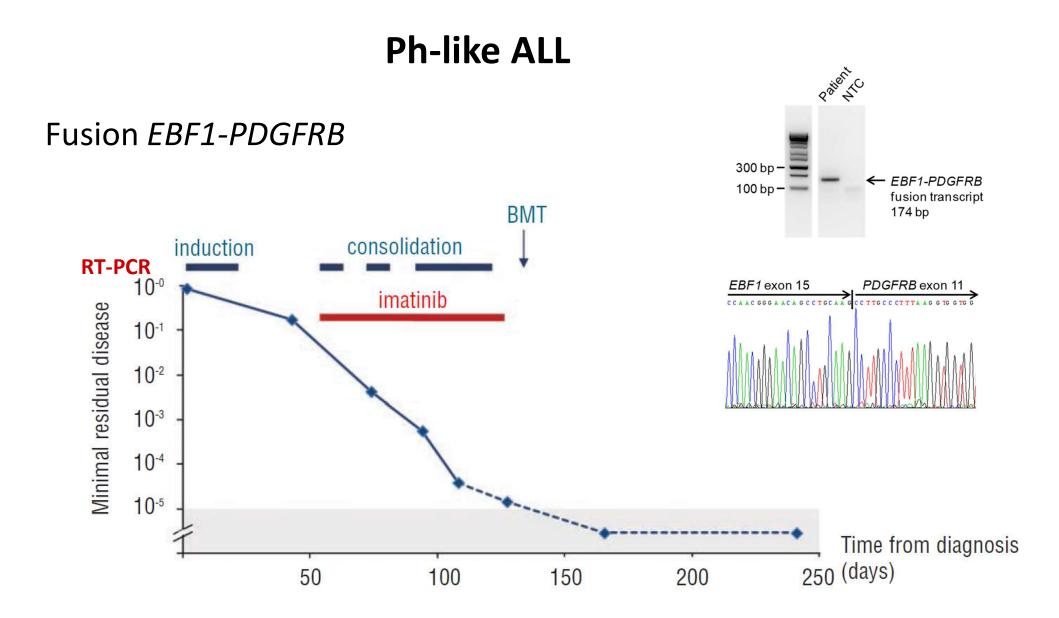


CRLF2 overexpression (flow cytometry)



Non CRLF2 cases

JAK2 or JAK1 mutations

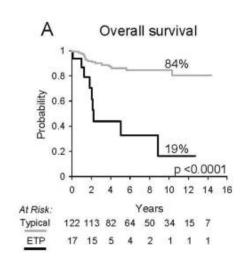

ABL1, ABL2, JAK2, EPOR, PDGFRB fusions IL7R, FLT3, Ras mutations

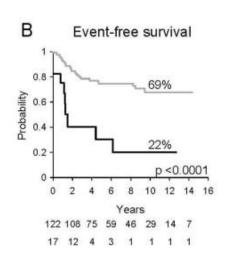
**R/ Ruxolitinib** 

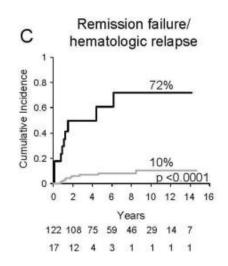
R/ Dasatinib
R/ Ponatinib
R/ Ruxolitinib

| Kinase      | Tyrosine<br>Kinase<br>Inhibitor | Number<br>of Gene<br>Partners | Fusion Partner Genes                                                                                                                            |
|-------------|---------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| ABL1        | Dasatinib                       | 12                            | CENPC, ETV6, FOXP1, LSM14,<br>NUP214, NUP153, RCSD1,<br>RANBP2, SNX2, SFPQ,<br>SPTAN1, ZMIZ1                                                    |
| ABL2        | Dasatinib                       | 3                             | PAG1, RCSD1, ZC3HAV1                                                                                                                            |
| CSF1R       | Dasatinib                       | 3                             | SSBP2, MEF2D, TBL1XR1                                                                                                                           |
| PDGFRB      | Dasatinib                       | 7                             | ATF7IP, EBF1, ETV6, SSBP2,<br>TNIP1, ZEB2, ZMYND8                                                                                               |
| PDGFRA      | Dasatinib                       | 1                             | FIP1L1                                                                                                                                          |
| CRLF2       | JAK2 inhibitor                  | 2                             | IGH, P2RY8                                                                                                                                      |
| JAK2        | JAK2 inhibitor                  | 19                            | ATF7IP, BCR, EBF1, ETV6,<br>PAX5, PCM1, PPFIBP1, RFX3,<br>SSBP2, STRN3, TERF2, TPR,<br>USP25, ZNF274, GOLGA5,<br>SMU1, HMBOX1, SNX29,<br>ZNF340 |
| <b>EPOR</b> | JAK2 inhibitor                  | 4                             | IGH, IGK, LAIR1, THADA                                                                                                                          |
| TSLP        | JAK2 inhibitor                  | 1                             | IQGAP2                                                                                                                                          |
| DGKH        | Unknown                         | 1                             | ZFAND3                                                                                                                                          |
| IL2RB       | JAK1/JAK3 inhibitor             | 1                             | МҮН9                                                                                                                                            |
| NTRK3       | TRK inhibitor                   | 1                             | ETV6                                                                                                                                            |
| PTK2B       | FAK inhibitor                   | 3                             | KDM6A, STAG2, TMEM2                                                                                                                             |
| TYK2        | TYK2 inhibitor                  | 3                             | MYB, SMARCA4, ZNF340                                                                                                                            |
| FLT3        | FLT3 inhibitor                  | 1                             | ZMYM2                                                                                                                                           |
| FGFR1       | Sorafenib/dasatinib             | 1                             | BCR                                                                                                                                             |
| BLNK        | ?SYK/MEKi                       | 1                             | DNTT                                                                                                                                            |

| Definition | Epidemiolog | gy   | Diagnosis    | Risk assessmer | nt    | Treatment | New drugs     | Ccl    |
|------------|-------------|------|--------------|----------------|-------|-----------|---------------|--------|
| Prephase   | Induction   | Inte | ensification | Continuation   | CNS p | revention | Specific situ | ations |





Lengline E et al. Successful tyrosine kinase inhibitor therapy in a refractory B-cell precursor ALL with EBF1-PDGFRB fusion. Haematologica. 2013


| Definition | Epidemiolog | gy Diagnosis    | Risk assessme | isk assessment |           | New drugs     | Ccl    |
|------------|-------------|-----------------|---------------|----------------|-----------|---------------|--------|
| Prephase   | Induction   | Intensification | Continuation  | CNS p          | revention | Specific situ | ations |

### **ETP ALL (early T-cell precursor ALL)**

A subset of very high-risk ALL: less NOTCH1 mut, more MRD+ More prevalent in adults

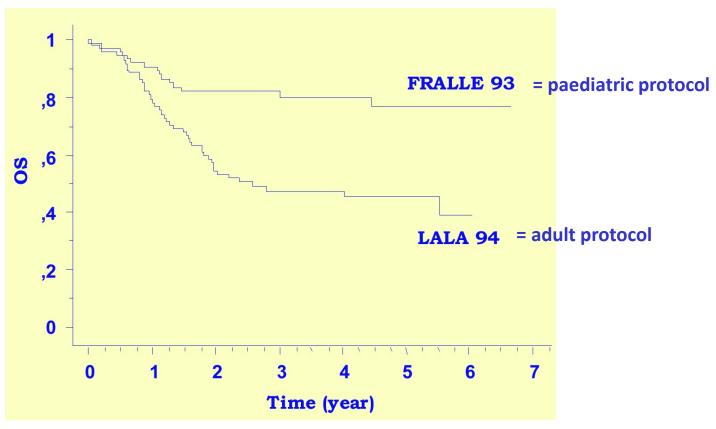






- CD1a negative (<5%)
- CD8 negative (< 5%)
- No or weak CD5 (<75%)
- Presence of one or more of myeloïd/ stem cell marker (> 25%)
  - CD117, CD34, HLA-DR,
     CD13, CD33, CD11b, CD65
- Unrearranged TCRy

→ allo-SCT in CR1


Myeloid based regimen?

Targetable mutations:

- FLT3 (35%)
- IDH1/2 (+/- 15%)
- NRAS
- Hyperactivation of JAK-STAT pathway → ruxolitinib?
- preferentially sensitive to the BCL-2 inhibitor, venetoclax

| Definition | Epidemiolo | gy Diagnosis    | Risk assessme | nt Treatment   |  | New drugs     | Ccl    |
|------------|------------|-----------------|---------------|----------------|--|---------------|--------|
| Prephase   | Induction  | Intensification | Continuation  | CNS prevention |  | Specific situ | ations |

# Young adult ALL (15-20 y)



Nicolas Boissel et al. JCO. 2003

Paediatric treatments are more effective Better adherence by patients, parents, and doctors in a paediatric environment

→ nowadays, (young) adult protocols are "paediatric inspired" (more asparaginase, vincristine, corticoïds)

| Definition | Epidemiolog | gy  | Diagnosis    | Risk assessment |                | Treatment | New drugs     | Ccl    |
|------------|-------------|-----|--------------|-----------------|----------------|-----------|---------------|--------|
| Prephase   | Induction   | Int | ensification | Continuation    | CNS prevention |           | Specific situ | ations |

# Elderly patient ALL (> 55 y $\rightarrow$ > 65 y)

- Biological differences in the spectrum of ALL (more Ph+ ALL, less T-ALL, less favorable cytogenetic features)
- Coexisting medical disorders → decreased tolerance for chemotherapy
   High mortality rate during induction if treated according to young adult programs (corticoides- vincristine, I-asparaginase,...)
- Since TKI therapy area → Ph+ ALL is "a good prognostic factor" in the elderly
  - TKI + minimal chemotherapy (vincristine, corticoïds)
  - Chemo free regimens (ponatinib + blinatumomab)
- New formulations of old-drugs (PEG-asparaginase, liposomal cytarabine, vincristine, liposomal and PEGylated anthracyclines, ...): not really less toxic
- Introduction in first line of the new very active drugs: blinatumomab and inotuzumab

# Elderly patient ALL (> 55 y $\rightarrow$ > 65 y)

#### Table 3 Challenges in treating older patients with ALL

#### **Clinical factors**

Decreased performance status

Increased number of comorbidities

Decreased organ function

Polypharmacy

Frequent dose reductions, delays, or omission

Higher risk of adverse events (infections, neurotoxicity, secondary malignancies)

#### **Biological factors**

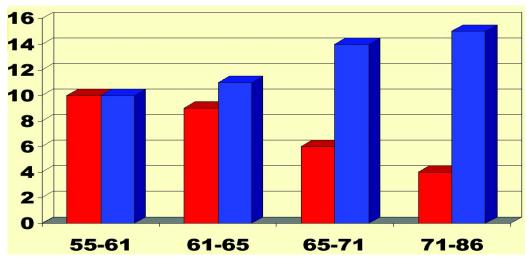
Increased incidence of adverse-risk karyotype (e.g., low hypodiploidy/ near-triploidy, t(9;22), t(4;11), complex cytogenetics)

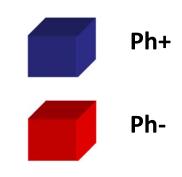
Lower incidence of favorable-risk karyotype (hyperdiploidy, t(12;21), ETV6-RUNX1)

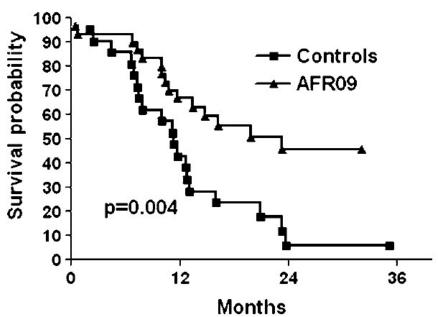
Higher incidence of adverse risk molecular signatures (Philadelphia chromosome-like, TP53 mutation)

#### Social factors

Inadequate caregiver and/or social support


Transportation/travel difficulties to tertiary centers


#### Other factors


Perceived lack of benefit of receiving anti-leukemia therapy rather than supportive/hospice care

| ı | Definition | Epidemiolo | gy   | Diagnosis    | Risk assessment |                | Treatment | New drugs     | Ccl    |
|---|------------|------------|------|--------------|-----------------|----------------|-----------|---------------|--------|
|   | Prephase   | Induction  | Inte | ensification | Continuation    | CNS prevention |           | Specific situ | ations |

# The elderly patient (> 55 y $\rightarrow$ > 65 y)







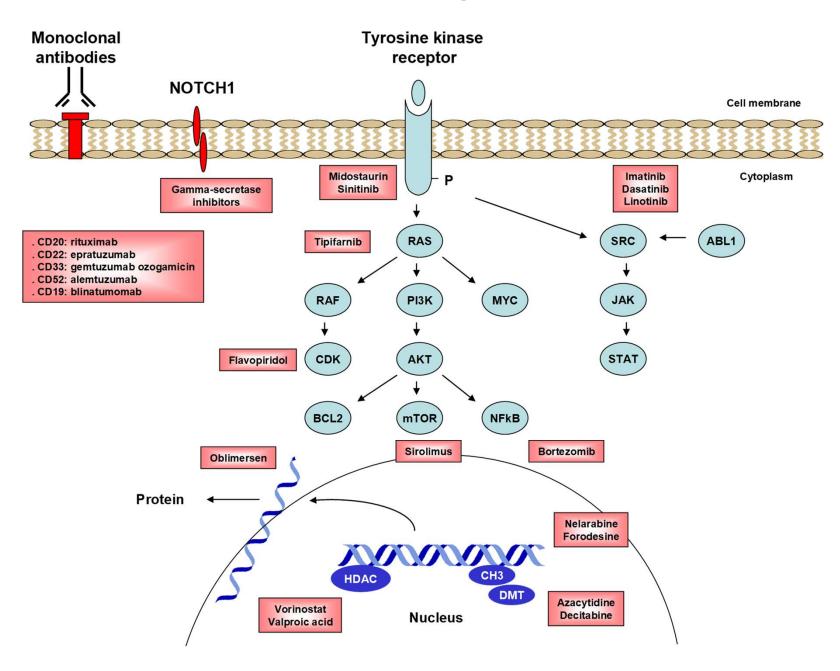
| Definition | Epidemiolo | gy Diagnosis    | Risk assessme | Risk assessment |  | New drugs     | Ccl    |
|------------|------------|-----------------|---------------|-----------------|--|---------------|--------|
| Prephase   | Induction  | Intensification | Continuation  | CNS prevention  |  | Specific situ | ations |

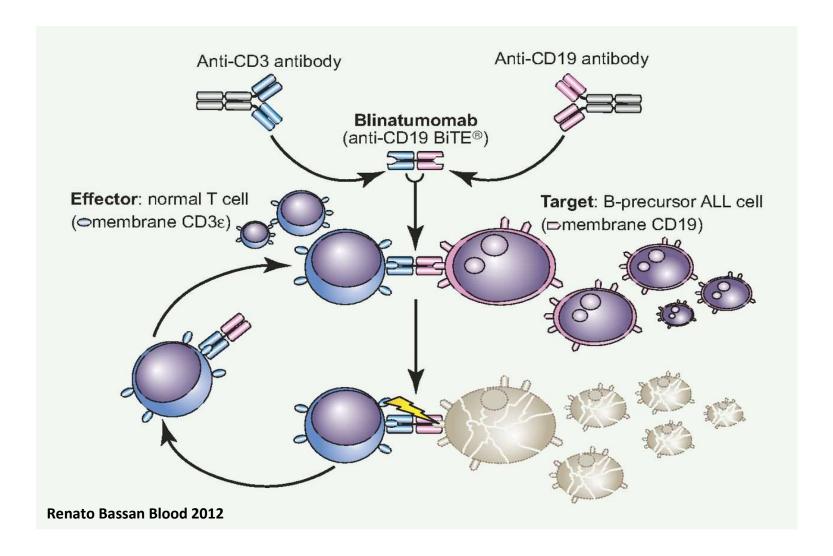
# The relapsing patient

The length from first CR (> vs < 2 years) has a major impact on outcome

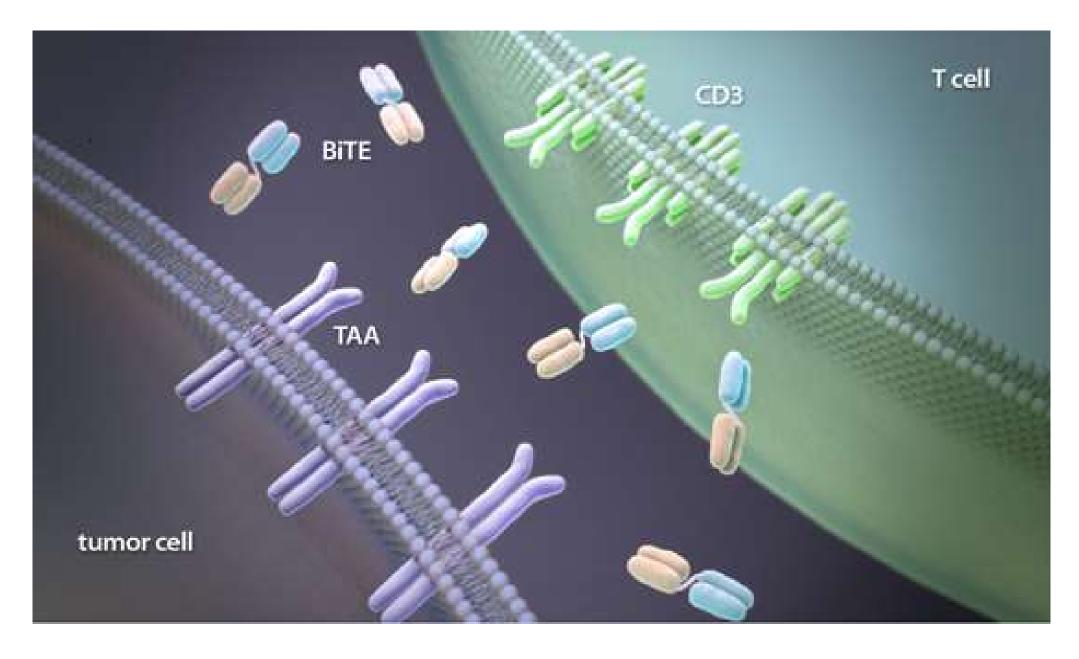
No standard rescue therapy (Hyper-CVAD, clofarabine based, ...)

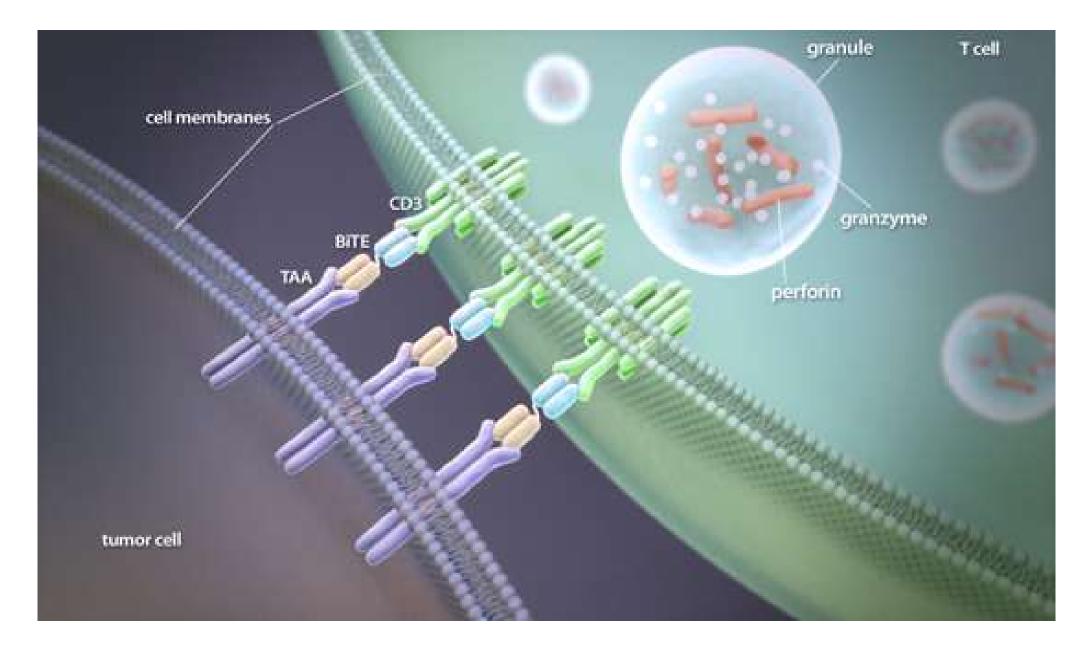
CR rates with various regimens ± 50%

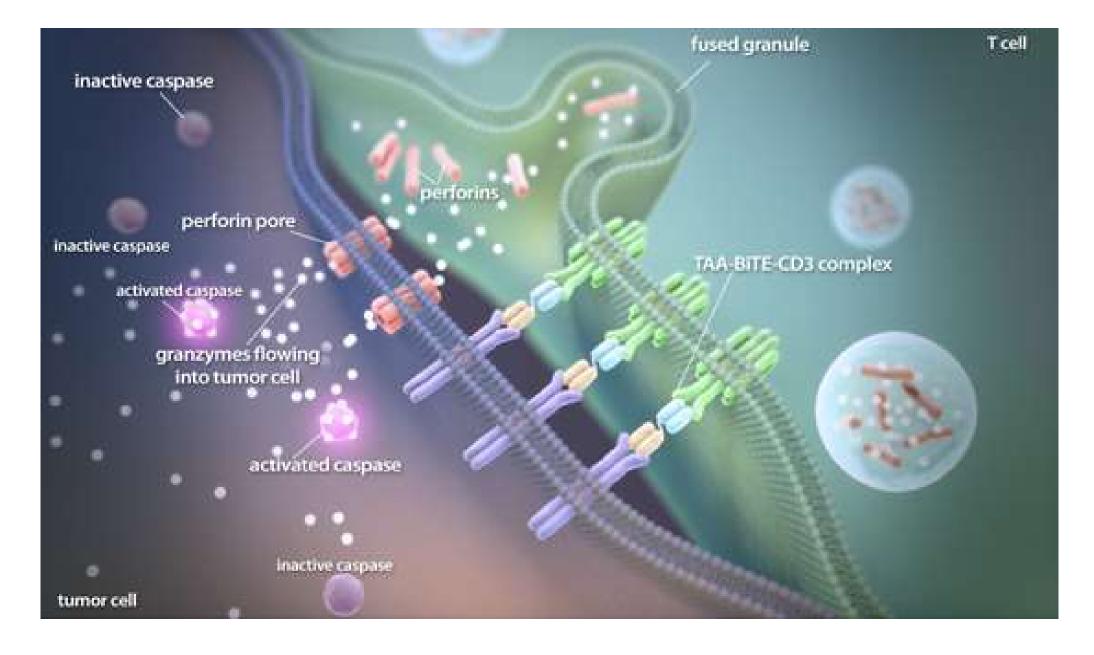

CR duration <u>+</u> 2-5 months


Allogeneic transplantation: whenever feasible ( $\pm$  20-30% long-term DFS)

New drugs: blinatumomab, inotuzumab, CART-cells

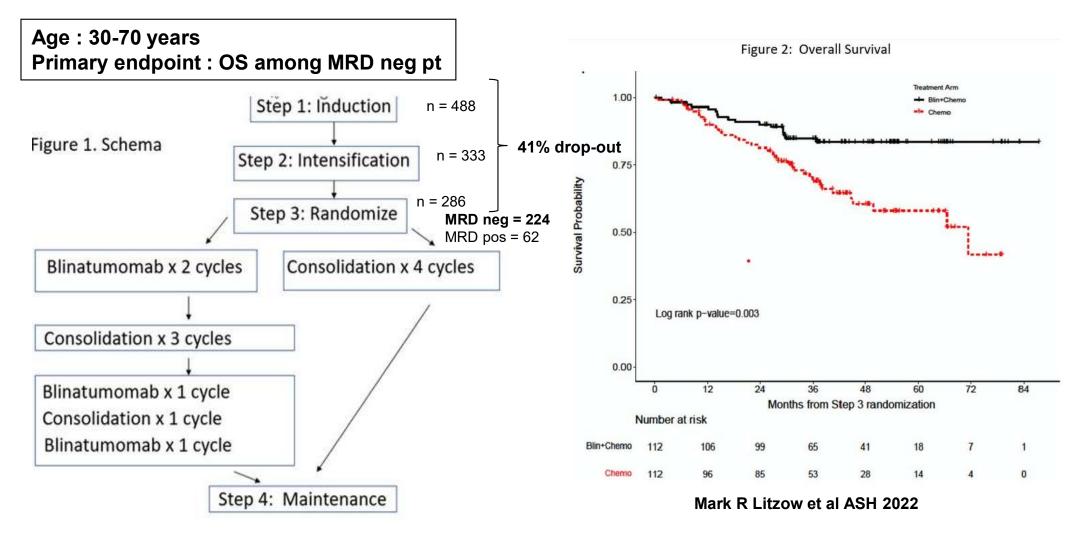

!!!!! T-ALL \(\rightarrow\)venetoclax, HDAC & HMA, ruxolitinib


### **New drugs**



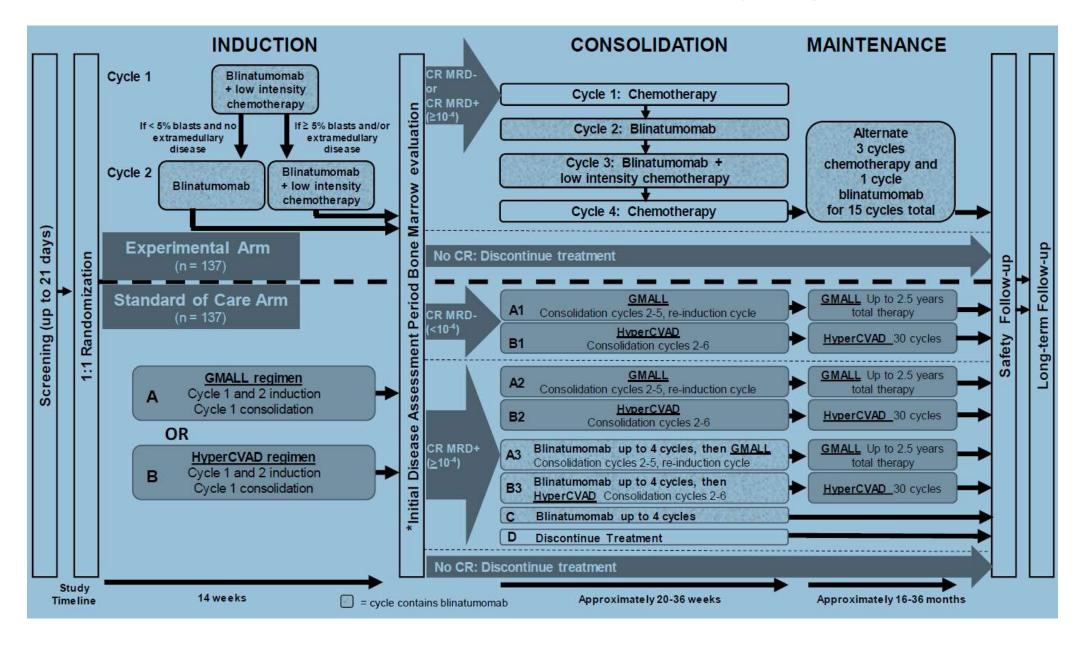



Blinatumomab (MT103) is a Bispecific T-cell Engager (BiTE®) antibody designed to direct cytotoxic T-cells to CD19 expressing cancer cell

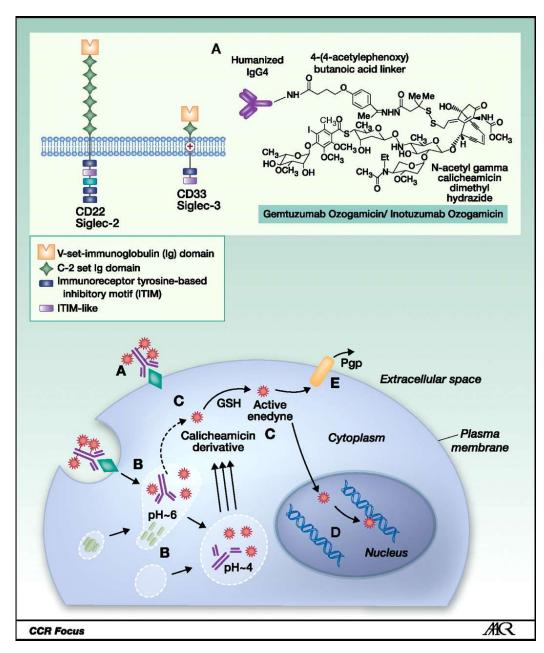








- 80% of MRD eradication (BLAST study)
- +/- 40% of CR rate as single agent in R/R ALL (TOWER)
- Blinatumomab is a non genotoxic, immunotherapeutic,
   mutation agnostic, well tolerated, very active drug opening a
   large spectrum of applications :
  - → bridge to allo
  - → consolidation post-allo
  - → association to first line strategy as post remission therapy (ECOG-ACRIN E1910 study)
  - → incorporation into the induction course to decrease toxicity in elderly patients (Goldengate study)

# ECOG-ACRIN E1910 study: association of blinatumomab to first the line strategy as post remission therapy




Consolidation therapy with blinatumomab improves OS in newly diagnosed adult patients with B-lineage acute lymphoblastic leukemia in MRD negative remission

# Goldengate study: blinatumomab alternating with low-intensity chemo vs standard of care for older adults with newly diagnosed ALL



### Inotuzumab: mode of action



The antibody-drug conjugate is internalized upon binding to CD22

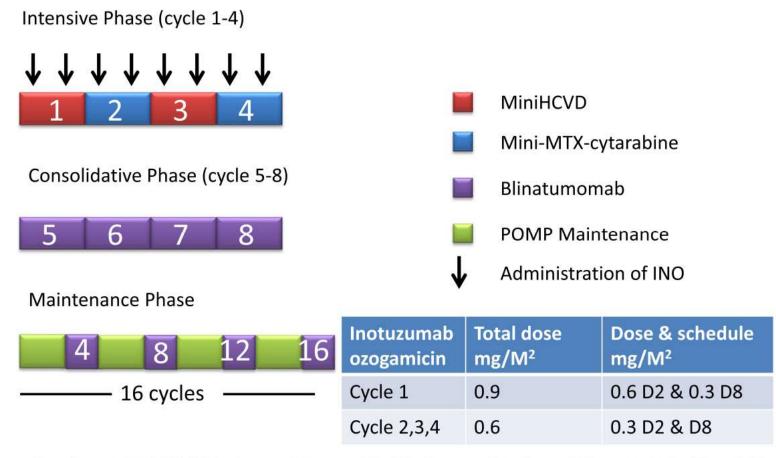
Calicheamicin is released inside the tumor cell

Calicheamicin binds to DNA, inducing double-stranded DNA breaks

Development of DNA breaks is followed by apoptosis of the tumor cell

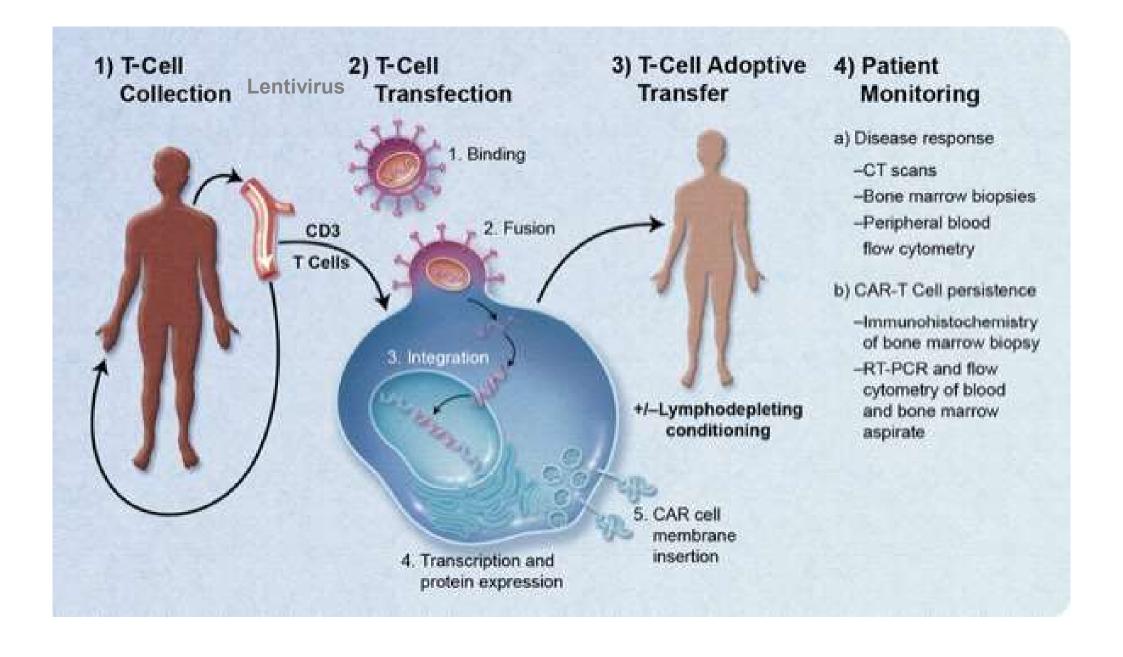
Very active drug in monotherapy in R/R B-ALL: +/- 80% CR

→ Ongoing trials incorporeting inotuzumab to less intensive chemo schedules in first line setting

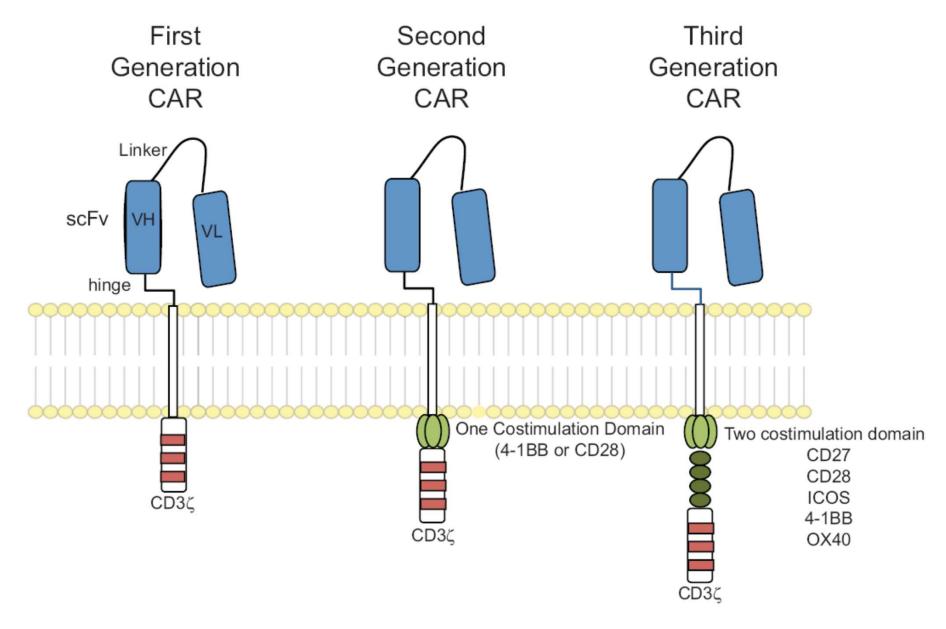

! Veno-occlusive disease

Alejandro D. Ricart Clin Cancer Res 2011;17:6417-6427

| Definition | Epidemiology | Diagnosis | Risk assessment | Treatment | New drugs | Ccl |
|------------|--------------|-----------|-----------------|-----------|-----------|-----|
|------------|--------------|-----------|-----------------|-----------|-----------|-----|


| Regimen                            | Patient population                                                                                       | N  | Median age<br>[range], years | Induction<br>mortality,<br>% | CR/CRi<br>rate,<br>% | MRD<br>negativity,<br>% | HSCT<br>rate,<br>% | CR<br>duration,<br>% | OS rate, %            |
|------------------------------------|----------------------------------------------------------------------------------------------------------|----|------------------------------|------------------------------|----------------------|-------------------------|--------------------|----------------------|-----------------------|
|                                    |                                                                                                          |    | R/R Ph-n                     | egative AL                   | L                    |                         |                    |                      |                       |
| Mini-HCVD + InO ±<br>blinatumomab  | Primary refractory 13%<br>CR1 duration < 1 year 40%<br>Prior HSCT 23%                                    | 84 | 35 [9-87]                    | 2                            | 80                   | 80                      | 40                 | 52%<br>(2-year)      | 39 (2-year)           |
| CVP + InO (SWOG 1312)              | Salvage 1: 44%<br>Prior blinatumomab 38%<br>Prior HSCT 19%                                               | 48 | 43 [20-79]                   | 2                            | 61                   | NR                      | 30                 | NR                   | Median<br>10.9 months |
| Venetoclax + navitoclax            | B cell ALL 50%<br>T cell ALL 50%<br>Median prior therapies: 4<br>Prior HSCT 14%<br>Prior CAR T cells 17% | 36 | 29 [6-72]                    | 8                            | 56                   | 56                      | 25                 | 44%<br>(6-month)     | NR                    |
|                                    |                                                                                                          |    | Frontline Ph-n               | egative old                  | ler ALL              |                         |                    |                      |                       |
| Mini-HCVD + InO ±<br>blinatumomab  | Age ≥ 60 years                                                                                           | 64 | 68 [60-81]                   | 0                            | 98                   | 95                      | 5                  | 76%<br>(3-year)      | 54 (3-year)           |
| Blinatumomab +<br>POMP (SWOG 1318) | Age > 60 years                                                                                           | 31 | 73 [66-84]                   | 0                            | 66                   | 92                      | 3                  | DFS 56<br>(1-year)   | 65 (1-year)           |
|                                    |                                                                                                          | Fr | ontline Ph-ne                | gative your                  | nger ALL             | Ĺ                       |                    |                      |                       |
| Sequential HCVAD + blinatumomab    | Age < 60 years                                                                                           | 27 | 38 [18-59]                   | 0                            | 100                  | 96                      | 30                 | RFS 76<br>(1-year)   | 89 (1-year)           |

### MiniHCVD-INO-Blinatumomab regimen




**Fig. 1** The diagrammatic schema of miniHCVD-inotuzumab ozogamicin-blinatumomab regimen. This was adapted from Jabbour et al. (2018) and Short et al. (2018). Detailed dosages and schedules are summarized in Table 4. miniHCVD low-dose hyper-fractionated cyclophosphamide, vincristine, dexamethasone. MTX methotrexate. INO inotuzumab ozogamicin; POMP prednisone, vincristine, methotrexate, mercaptopurine; D day

# Anti-CD19 chimeric antigen receptor (CAR) T cells



# Chimeric antigen receptors (CARs)



# **Challenges with CAR T cells**

#### **Toxicity**

- Cytokine release syndrome
- Neurotoxicity (CD19)
- B-cell aplasia (CD19)

Loss of CAR-T cells → relapses

Security/efficacy of retrovirals

Potential insertionnal mutagenesis -> T-cell malignancy

Latency, replication

Transgene variegation  $\rightarrow$  exhaustion of the clone  $\rightarrow$  impact on efficacy

Immuno-editing → CD19 relapses

Manufactoring time process

Cost

### **Conclusion**

- Cure rate of childhood ALL > 80%
  - → Still serious acute and late complications due to treatments (osteonecrosis, hyperglycemia, anthracycline-induced myocardial injury, neurologic defects, ...)
  - > Shift toward the reduction of deleterious acute and late effects of treatment
- Cure rate in **adults** decline sharply to less than 50% in adults
- over the age of 40
  - → The future resides in defining the molecular pathways underlying the pathogenesis of ALL in order to find proteins suitable for less toxic targeted therapy
  - → Room +++ for immunotherapy (also in first line)
- Further elucidating the underlying pharmacogenetic factors of the host
- When comparing different treatment trials, remember that slightly different median ages can translate into relatively large differences in outcome

### References

Charles G. Mullighan. How advanced are we in targeting novel subtypes of ALL? Best Pract Res Clin Haematol. 2019 Dec;32(4):101095

Roex G et al CAR T in B ALL Review of clinical trials Pharmaceutics 2020

ALL EBMT recommandations for alloSCT 2020

Inbar T, Rowe JM, Horowitz NA. Which patients should I **transplant** with acute lymphoblastic leukemia? Best Pract Res Clin Haematol. 2017 Sep;30(3):249-260

Fatiyizzo et al Physiopathology of T ALL Frontiers in Oncology 2020

Apel A et al Safety and efficacy of blinatumomab a real world data Annals of hematology 2020

Gökbuget N. How should we treat a patient with **relapsed Ph-negative B-ALL** and what novel approaches are being investigated? Best Pract Res Clin Haematol. 2017 Sep;30(3):261-274

Frey NV, Luger SM. How I treat adults with relapsed or refractory Philadelphia chromosome-negative acute lymphoblastic leukemia. Blood 2015;126:589–96.

Wolach O, Amitai I, DeAngelo DJ. Current challenges and opportunities in treating **adult patients with Philadelphia-negative acute lymphoblastic leukaemia**. Br J Haematol. 2017 Dec;179(5):705-723

Lee SHR, Yang JJ. **Pharmacogenomics** in acute lymphoblastic leukemia. Best Pract Res Clin Haematol. 2017 Sep;30(3):229-236

# References

Roberts KG. The biology of **Philadelphia chromosome-like ALL**. Best Pract Res Clin Haematol. 2017 Sep;30(3):212-221

Maese L, Tasian SK, Raetz EA. How is the **Ph-like** signature being incorporated into **ALL therapy**? Best Pract Res Clin Haematol. 2017 Sep;30(3):222-228

Wieduwilt MJ. How should we treat **older adults with Ph+ adult ALL** and what novel approaches are being investigated? Best Pract Res Clin Haematol. 2017 Sep;30(3):201-211

Short NJ, Kantarjian H, Jabbour E, Ravandi F. Which tyrosine kinase inhibitor should we use to **treat Philadelphia chromosome-positive acute lymphoblastic leukemia**? Best Pract Res Clin Haematol. 2017 Sep;30(3):193-200

O'Dwyer KM, Liesveld JL. **Philadelphia chromosome negative B-cell acute lymphoblastic leukemia in older adults**: Current treatment and novel therapies. Best Pract Res Clin Haematol. 2017 Sep;30(3):184-192

Boissel N. How should we treat the **AYA patient** with newly diagnosed ALL? Best Pract Res Clin Haematol. 2017 Sep;30(3):175-183

- Graux C. **Biology** of acute lymphoblastic leukemia (ALL): clinical and therapeutic relevance. Transfus Apher Sci. 2011 Apr;44(2):183-9. Review
- Giebel S. Hematopoietic stem cell transplantation for adults with Philadelphia chromosome-negative acute lymphoblastic leukemia in first remission: a position statement of the European Working Group for Adult Acute Lymphoblastic Leukemia (EWALL) and the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplantation 2019; 54:798–809