

BHS training courseTransfusion and Cell therapy

2nd March 2024

Blood-derived cell therapy products: processing and regulations

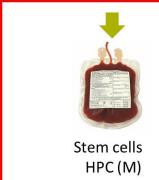
Ivan Van Riet (prof. dr. sc)

Department of Hematology – Hematopoietic cell bank – UZ Brussel

Ivan.vanriet@uzbrussel.be

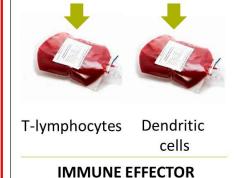
Blood-derived Cell Products

Bone marrow



Cord blood

Peripheral blood (apheresis)



Stem cells HPC (A)

CELL THERAPY

STEM CELL TRANSPLANTATION

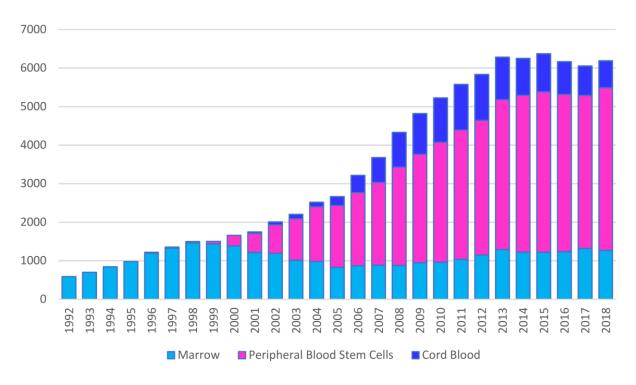
Stem cell transplantation and donor types

Autologous

Allogeneic

Related

- ☐ Sibling (HLA-matched brother or sister) > first choice (for 1/3 patients available)
- ☐ Haplo-identical (half-matched family member) > increasing incidence
- ☐ Syngeneic (identical twin pair) > exceptional


Unrelated

- □ Donor registries worldwide (volunteer donors) > 39 milj. donors available (70-10% availability)
- ☐ Cord blood donors > 850.000 units available worldwide slightly decreasing incidence

https://wmda.info

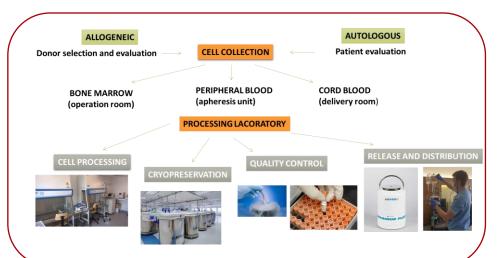
Unrelated donor transplants by cell source in the last decades

Hematopoietic (stem) cell therapy: collaboration and teamwork

Cell bank (collection and processing facilities)

HLA-typing laboratory

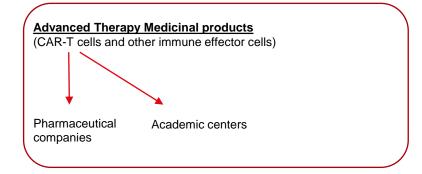
National donor registry (MDPB)


Laboratory Hematology Laboratory Immunology Laboratory Microbiology **Clinical facility**

Hospital Pharmacy Laboratory Pathology Dept. Radiotherapy ICU

+ other supportive depts

Hematopoietic (stem) cell bank



Collected and/or processed cell products

- > Hematopoietic stem cells
- Donor lymphocytes
- ➤ Leukapheresis products as starting material for:

Classification of blood-derived cell products according to complexity of in vitro processing

MINOR MANIPULATIONS

- Cell selection and/or separation
- Volume reduction
- Cell washing
- Cryopreservation

Stem cell grafts (auto and allo), donorlymphocytes

Basic Licence of tissue/cell bank

McGrath E et al. EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies [Internet]. 7th edition. Cham (CH): Springer; 2019.

MORE COMPLEX MANIPULATIONS

(Advanced Therapy Medicinal Products)

Genetic modification

In vitro expansion and differentiation

CAR-T cells, mesenchymal stem cells,...

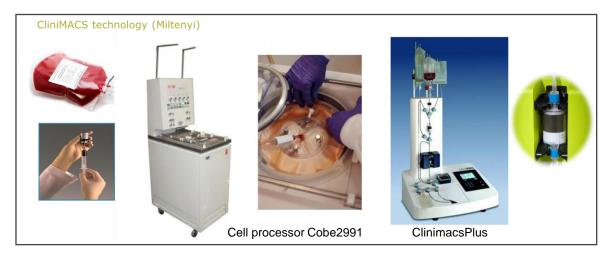
Basic Licence of tissue/cell bank

GMP certificate

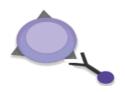
Manufacuring Licence

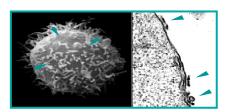
+

Clinical trial approval

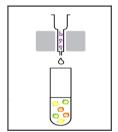


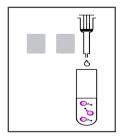
How can graft processing influence clinical outcome?


Transplantation type	Advantages	Disadvantages
Allogeneic	No tumor contamination of the graft	Donorselection required
	Graft versus tumor reaction	Graft versus host disease
	Direct infusion after collection	ABO-incompatibility (donor vs patient)
		Low stem cell numbers in cord blood (adult recipient)
Autologous	No donorselection required	Tumor contamination of the graft (possible)
	No Graft versus host disease	No Graft versus tumor reaction
	No ABO-incompatibility (donor vs patient)	Stem cell storage limited < 72 hr (non-frozen)

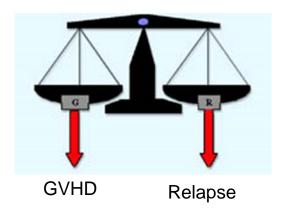


In vitro (immunomagnetic) cell selection: a tool for T cell or tumor cell depletion from the graft




- Super-paramagnetic, biodegradable
 particles conjugated to monoclonal antibody
- Permanent magnet and separation column
 with ferromagnetic matrix
- computerized device
- Targets: CD34+ stem cells, T cells, NK cells, B cells, myDC's,...

In vitro T cell depletion in allo grafts


Positive selection: CD34+ cell targetting

	Median	Range
Before selection:		
Number NC (x10 ⁸ /kg)	11,4	4-31,8
Purity CD34+ cells	0,3	0,1-1,6
Number CD34+ cells (x10 ⁶ /kg)	8,6	3,1-35,9
Number CD3+ cells (x10 ⁶ /kg)	286,5	105-1425

After selection:

Purity CD34+ cells	98,0 %	41,1-99,5
Number CD34+ cells (x10 ⁶ /kg)	6,0	1,9-17,4
Yield CD34+ cells	71,5 %	50,0-100
Number CD3+ cells (x10 ³ /kg)	7,6	3-50,7
T cell depletion	4,5 log	3,4-5,1

40 procedures – Clinimacs Plus device - allo grafts - UZ Brussel Saad A. et al, Bone Marrow Transplantation (2017) 52, 1241–1248

Delayed engraftment?

Delayed immune reconstitution

Optimal dose: T cell add back?

Depletion of T cell subsets ($T\alpha\beta$, CD45 R0,...) by direct cell targetting (negative selection)?

In vitro tumor cell depletion in autografts

Presence of **(minimal) residual amounts** of tumor cells in autografts can be demonstrated for several indications (Multiple Myeloma,...) using flowcytometry, PCR or NGS

Tumor cell purging *in vitro* **technically feasable** (CD34+ cell selection or targeted tumor cell removal)

No significant clinical benefit demonstrated in (most) randomized clinical trials (Multiple Myeloma, neuroblastoma,...)

Tumor contamination in graft can reflect also higher residual disease in vivo

Considering *in vivo purging* (monoclonal antibodies) prior to autograft collection or after autograft infusion ???

No reimbursement by RIZIV/INAMI (in contrast to T cell depletion for allografts)

ABO incompatibility between donor and recipient: how to process the graft?

Major incompatibility

- If CD34+ cell selection peformed: all RBC are removed from the allo graft
- if no CD34+ cell selection:
 - □ determine titer anti-A/anti-B antibodies (recipient)
 - If > 1/16:
 - □ determine Hct and volume of graft:
 - if volume RBC < 15 ml: slow graft infusion (<25ml/hour)
 - If volume RBC > 15 ml: RBC reduction (apheresis device) or plasma-exchange (recipient)

Cryopreservation and storage of hematopoietic stem cells

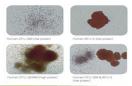
- Viability of stem cells starts to decrease after 72 hours of storage between 2-8°C
- ➤ Longer storage necessitates prior freezing and cryopreservation
- > Freezing bags: fixed cell concentration 100-200x10e6 nucleated cells/ml > 2-8 bags/graft
- Freezing medium with cryoprotectant (7,5 to 10% DMSO)
- Controlled rate freezing (computerized device)
- Storage in vapor phase liquid nitrogen (up to > 20 years possible)

Jahan S, Transfusion Medicine Reviews 35 (2021) 95-102

Cryopreservation and storage of hematopoietic stem cells

Cryopreservation and storage of hematopoietic stem cells

- > Entrance cryopreservation unit restricted to authorized staff members
- Continuous temperature monitoring and registration (24/7)
- Quarantine zone
- ➤ Alarm System
- Inventarisation system
- Informed consent between donor, patient and stem cell bank (storage duration)



Quality control and release of hematopoietic stem cells

Cytometry

Cell cultures

- Donor eligibility testing (IDM markers)
- Control of (frozen) test samples (viability, cell yield, microbiology)
- Release report (specified criteria)
- Exceptional release by medical director if normal release not possible (medical need)

Microbiological analyses

Stem cell yield after thawing:

> 80% (50-95) (CD34+/7-AAD-)

Stem cell yield after isolation:

▶ 70% (50-90)

Purity after stem cell isolation:

> 98% (93-99)

Positive microbiology testing:

➤ Lower than 1%C

Distribution and infusion of stem cell grafts

- Transport of graft to cell therapy unit
- Shipper / courier
- Thawing by laboratory staff or nursing staff
- Waterbath or automatic thawing device (Plasmatherm)
- Mostly no washing and/or volume reduction
- > Infusion by nursing staff / supervision by transplant physician
- ➤ DMSO amount < 1ml/kg/day</p>

Regulations, licences and accreditations (1)

National

- Collection and/or processing of human body material with the intention of clinical use can in Belgium only be performed by a licenced tissue/cell bank (hospital or academic organisation with faculty of medicine)
- All tissue/cell banks <u>must</u> have a <u>specific licence</u> for each type of tissue- or cell type
- Licence(s) can be obtained after inspection by FAGG/AFMPS (profesional inspectors)
- Inspections are performed according to regulations in <u>national laws</u> and royal decrees (based on <u>EU directives</u>)
- Human body material for manufacturing of advanced therapy medicinal products (ATMPs)
 (also by third parties) must be collected in centers that have the appropriate tissue/cell bank licence
- > ATMP manufacturing in academic/hospital (non-commercial) setting requires additional certificates from FAGG/AFMPS (GMP certificate, manufacturing licence, clinical trial approval)

www.fagg-afmps.be

https://webgate.ec.europa.eu/eucoding/reports/te/index.xhtml(externe link) https://webgate.ec.europa.eu/eucoding/reports/te/activities.xhtml(externe link)

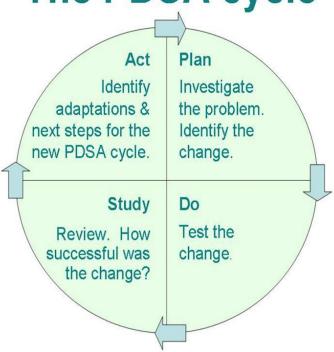
Regulations, licences and accreditations (2)

International

All European (stem) cell therapy centers <u>can</u> apply for an international accreditation for all activities that relate to collection, processing <u>and</u> clinical use of stem cells and immune effector cells

- Accreditation can be obtained after inspection by JACIE (accreditation organisation of the EBMT) (peer inspectors)
- Inspection performed according to international JACIE–FACT quality standards
- Accreditation is not a legal requirement for Belgian centers <u>BUT</u> obligatory for reimbursement by RIZIV/INAMI and collaboration with the national donor registry (MDPB)

https://www.ebmt.org


Quality management: the tools and the duties

- Standards
- Quality manual (Standard operation procedures)
- Audit policy
- Regular QM meetings
- Registration policy (Biovigilance)
- Service Level Agreements
- Central role quality manager!

To do

- Read SOP's, propose changes, approve, apply them!
- Communicate / participate to QM meetings
- Follow (re-) training and education (e-learning)
- Registrate/report deviations (biovigilance)

The PDSA cycle

Analysis of quality indicators

Collection efficiency Number of procedures to reach target Cell yield / recovery
Cell viability / bioactivity
Sterility of cell product
Storage stability

Engraftment kinetics
Incidence of graft failure
Treatment-related mortality
Overall survival
Incidence of SAE/SAR

when QI's outside normal ranges (references/in house experience

THANK YOU

