
BHS training course and seminars

seminar n°5: transfusion and cell therapy

Transfusion indications

(RBC, platelets, plasma)

AND

Patient Blood Management

Timothy Devos (UZ Leuven)

Indications for erythrocyte transfusions (ECL)

General rules transfusion

- only transfuse if the risk of not-transfusing > risk of the transfusion (risk-benefit)
- carrying out a transfusion is NOT only decided by a lab value, always evaluate the clinical condition of the patient
- there is no magic 'transfusion threshold'

Trigger Hb concentration

- **Hb** > = 9 g/dl \rightarrow rarely a transfusion is needed
- Hb 7-9 g/dl → low risk of hypoxic organ damage in most of the patients:
 « Why transfuse ? ». Decision determined by clinical condition.
- Hb < 7 g/dl → substantial risk of hypoxic organ damage: « Why not transfuse ? »</p>
- **Hb** < **4.5 g/dl** \rightarrow life of the patient is in immediate danger.

Other factors

- duration of anemia (acute versus chronic)
- clinical evaluation: cardiovascular, pulmonary, cerebral status → risk of volume overload?
- possibility of acute bleeding?

Going towards more restrictive transfusion thresholds

TRICC-trial: transfusion requirement in critical care

TABLE 3. COMPLICATIONS THAT OCCURRED DURING THE PATIENTS' STAYS IN THE INTENSIVE CARE UNIT.

Complication*	RESTRICTIVE- TRANSFUSION STRATEGY (N = 418)	LIBERAL- TRANSFUSION STRATEGY (N=420)	ABSOLUTE DIFFERENCE BETWEEN GROUPS	95% Confidence Intervalt	P Value
	no. (%)		percent		
Cardiac	55 (13.2)	88 (21.0)	7.8	2.7 to 12.9	< 0.01
Myocardial infarction	3 (0.7)	12(2.9)	2.1	_	0.02
Pulmonary edema	22 (5.3)	45 (10.7)	5.5	1.8 to 9.1	< 0.01
Angina	5 (1.2)	9 (2.1)	0.9	_	0.28
Cardiac arrest	29 (6.9)	33 (7.9)	0.9	-2.6 to 4.5	0.60
Pulmonary	106 (25.4)	122 (29.0)	3.7	-2.3 to 9.7	0.22
ARDS	32 (7.7)	48 (11.4)	3.8	-0.2 to 7.8	0.06
Pneumonia	87 (20.8)	86 (20.5)	-0.3	-5.8 to 5.1	0.92
Infectious	42 (10.0)	50 (11.9)	1.9	-2.4 to 6.1	0.38
Bacteremia	30 (7.2)	40 (9.5)	2.3	-1.4 to 6.1	0.22
Catheter-related sepsis	21 (5.0)	17 (4.0)	-1.0	-3.8 to 1.8	0.50
Septic shock	41 (9.8)	29 (6.9)	-2.9	-6.7 to 0.8	0.13
Hematologic‡	10 (2.4)	10 (2.4)	0	-2.1 to 2.1	1.00
Gastrointestinal§	13 (3.1)	19 (4.5)	1.4	-1.2 to 4.0	0.28
Neurologic¶	25 (6.0)	33 (7.9)	1.9	-1.6 to 5.3	0.28
Shock	67 (16.0)	55 (13.1)	-2.9	-7.7 to 1.8	0.23
Any complication	205 (49.0)	228 (54.3)	5.2	-1.5 to 12.0	0.12

'restrictive' group: ECL if Hb < 7 g/dl, target Hb 7-9 g/dl</p>

'liberal' group: target Hb 10-12 g/dl

n = 838

inclusion:

Hb < 9g/dl during first 72h of admission

duration of study 30 days:

- restrictive group:
- 2.6 ECL per patient
- liberal group:
- 5.6 ECL per patient

reduction of 56 %

primary endpoint:

30 days mortality (all causes)

RESULTS TRICC TRIAL

- significantly more pulmonary edema and AMI in the 'liberal group' (cfr table 3)
- mortality D30: restrictive group 18.7% liberal group 23.3 % (p = 0.11)
- survival significantly better in 2 subgroups of the restrictive group:
 - APACHE II score ≤ 20
 - > age < 55 yr

CONCLUSION:

TRICC trial: euvolemic intensive care adult patients benefit from a restrictive transfusion approach

→ <u>aim:</u> Hb concentrations between 7.0 and 9.0 g/dl

FOCUS trial: hip surgery and ECL transfusion

- <u>aim</u>: study safety of restrictive transfusion strategy in older (hip-) surgery patients with history of <u>or</u> risk factors for cardiovascular disease.
- n = 2016; ≥ 50 yr; Hb < 10 g/dl post-surgery
- restrictive (Hb: 8 g/dl) vs. liberal (Hb: 10 g/dl)
- restrictive groep: 3 x less ECL
- **no outcome difference** (primary outcome) = mortality or inability to walk around a room without human assistance on D60.
- number of complications equal in both groups

ESTABLISHED IN 181

DECEMBER 29, 2011

VOL. 365 NO. 26

Liberal or Restrictive Transfusion in High-Risk Patients after Hip Surgery

JAMA | Special Communication

Patient Blood Management
Recommendations From the
2018 Frankfurt Consensus Conference

JAMA | Special Communication

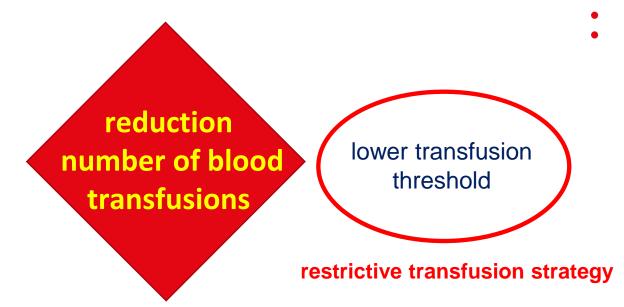
Red Blood Cell Transfusion 2023 AABB International Guidelines

RBC transfusion (ECL) **threshold Hb < 7.0 g/dL** for:

- critically ill and clinically stable patients (Hb < 7.0 g/dL) (also hospitalized, stable adult patients with hematologic and oncologic disorders)
- hemodynamically stable patients with acute gastrointestinal bleeding (Hb 7.0 g/dL)

RBC transfusion (ECL) threshold Hb < 7.5 g/dL:

• "in accordance with the restrictive strategy threshold used in most trials, clinicians may choose a threshold of 7.5 g/dL for patients undergoing cardiac surgery."


RBC (ECL) transfusion threshold Hb < 8.0 g/dl

- for those undergoing orthopedic surgery or those with preexisting cardiovascular disease.
- chronic CV disease or ongoing acute coronary syndrome (ACS)

erytropoietin stimulating agent (ESA)

bloodsaving surgical techniques, cell savers, ...

lower volume per transfusion = single unit policy

Special requirements for ECL

- 1) irradiated ECL
- 2) CMV-negative blood components (ECL)
- 3) washed erythrocytes (ECL)

Indications for platelet transfusions

General rules

- platelet transfusions improve haemostasis in thrombocytopenic patients
- > 70 % of the platelet transfusions: prophylactic
- if chronic BP transfusions: monitor efficacy!

pooled random donor BP or single donor BP: therapeutically equivalent

Indications platelet transfusions

before surgery or invasive procedures in thrombocytopenic patients (transfusion threshold discussed later)

➤ stable chronic thrombocytopenia (MDS, AA, other): but → keep a low transfusion threshold to avoid HLA-immunisation.

> massive transfusion: general agreement that the BP should not drop below 50.000/μl.

Indications platelet transfusions (2)

> ITP (immune mediated thrombocytopenia): only if life threatening bleeding. BP transfusions will then be combined with lvlg and steroids.

> DIC: in case of active bleeding or at high risk of bleeding: maintain BP > 50.000/µl

> neonatal immune thrombocytopenia: in addition to high dose Ivlg, HPA-compatible platelets may be required

(maintain BP count > $30.000/\mu$ l)

NOT an indication

> ITP if no life threatening bleeding

post transfusion purpura (PTP):high dose lvlg = treatment of choice

➤ heparin-induced thrombocytopenia (HIT): contra-indication (risk of inducing arterial or venous thrombosis)

NOT an indication (2)

- > thrombotic thrombocytopenic purpura (TTP): contra-indication.
 - √ safer not to transfuse blood platelets
 - √ only risk-benefit if catheterisation needed (pre-apheresis)
 - √ consider BP transfusion if life threatening bleeding

> hypersplenism

optimal profylactic trigger for platelet TF?

4 prospective randomised trials 3 non-randomised studies:

10,000/μL Platelet Transfusion Trigger					
Major		Units		Units Per	
Bleeding (%)	Hemorrhagic Deaths	Concentrates	Apheresis	Thrombocytopenic Day	Reference
14	0				20
22 18	1 0	15.4§ (0-152)	3.0‡ (0-16)		21 22
12	0 3	54§ (0-647)		0.5§ (0-6.94)	23 24
15 /		2.2 (0 017)		0.42	25
42	0				26

> 10.000/µl as safe as 20.000/µl

less platelet transfusions given when trigger 10.000/μl

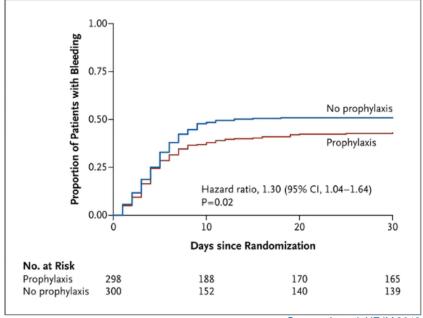
		Platelet Transfusions			
Major		Units		Units Per	
Bleeding (%)	Hemorrhagic Deaths	Concentrates	Apheresis	Thrombocytopenic Day	Reference
17	0				20
20	0				21
17	0	25.4 (0-180)	4.8 (0-33)		22
	0				23
14	4	73 (3-943)		0.8 (0.03-30)	24
18 /				0.49	25
30 /	0				20

20.000/µL Platelet Transfusion Trigger

- 20. Zumber et al. BBMT 2002
- 21. Rebulla et al. NEJM 1997
- 22. Wandt et al. Blood 1998.
- 23. Heckman et al. JCO 1997.
- 24. Gil-Fernandez et al. BMT 1996.
- 24. GII-remanuez et al. bivi i 1990
- 25. Lawrence et al. Leuk Lymph 2001.
- 26. Navarro et al. Haematologica 1998.

prophylactic versus therapeutic?

- TOPSS (Trial Of Prophylactic Platelets Study)
 - non-inferiority study (randomized, open label)
 - non-prophylactic (therapeutic) versus prophylactic
 - hematological patients (70% autologous stem cell Tx in both study arms)


- ❖ np-arm: 59% receiving BP-transfusions
- p-arm: 89% receiving BP-transfusions

TOPSS trial

results:

- time to first grade 2-4 bleeding: significantly shorter in np-arm
- **np-arm:** more days with grade 2-4 bleedings in comparison with p-arm (median 1.7 d vs. 1.2 d)

Stanworth et al. NEJM 2013

- WHO grade 2-4 bleedings: 50% in np-arm; 43 % in p-arm (p value for non-inferiority 0.06)
- → non-inferiority of non-prophylactic (= therapeutic) BP-transfusion strategy NOT shown!
- (subanalysis auto HPC Tx: 47% gr 2-4 bleedings in np-arm vs. 45% in p-arm)

Transfusion trigger platelet transfusion

- keep BP > 10.000/µl if no risk factors for bleeding
- keep BP > 20.000/μl if risk factors for bleeding (fever, sepsis, ...)
- acute or recent important bleeding: keep BP > 50.000/μI
- therapeutic dose op LMWH: keep BP > 50.000/μI
- surgical intervention: BP > 50.000/μI
- less invasive procedures (DVC, transjugular liverbiopsy):
 BP > 30.000/µl
- major surgical procedures (CNS): keep BP > 100.000/μl
 (talk with the surgeon !)

Indications for the transfusion of plasma (FFP)

indications plasma transfusions

> patients with massive bleeding (life-threatening) caused by trauma or surgery:

(despite the lack of randomised controlled trials)

- plasma should be given in adequate amounts to prevent further bleeding (10-15 ml/kg).
 Repeat if the bleeding persists.
- at the same time: control source of bleeding, correct other factors leading to coagulopathy (acid-base disorders, hypothermia, hypocalcemia, anemia, thrombocytopenia).
- bleeding in patients with disturbed coagulation tests (or thrombolysis)
- bleeding in patients on coumarine anticoagulants:
 - Prothombin complex concentrates (PCC) (PPSB or Octaplex®) are treatment of choice, together with vitamine K.
 - administration of plasma can be taken into consideration when PCC not available

indications plasma transfusions (2)

➤ DIC: plasma can be taken into consideration for patients with DIC who are actively bleeding. NOT in order to correct abnormal coagulation tests.

severe hypofibrinogenemia: infuse several plasma units!

- → drug induced hypofibrinogenemia (e.g. asparaginase in ALL): 4 units are given if fibrinogen < 1 g/L.
 </p>
- > TTP: supply of the missing metalloproteinase enzyme (ADAMTS-13)!

indications plasma transfusions (3)

neonatal exchange transfusions in case of ABO incompatibility

NOT an indication for plasma transfusions

> prophylactic plasma transfusions to patients with normal coagulation tests, submitted to high-risk surgery or invasive diagnostic procedures.

> volume expansion (in spite of being a good volume expander; we have colloids and cristalloids for that !)

> plasma exchange: use albumin or crystalloids!

Patient Blood Management (PBM)

PBM

Evidence-based, multidisciplinary, patient-centered, multimodal approach → to optimise care of patients who might need transfusion

= Bundle of care

⇒ Goal = to improve patient outcome

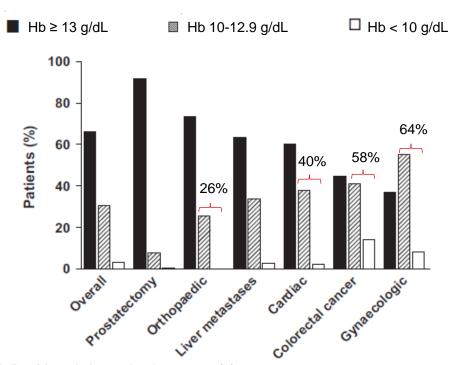
Focus shift

PBM: proactive application of 4 leading principles

bloodsaving surgical techniques, cell savers, avoid blood overdraw, ...

Interdisciplinary Managing **Blood Conservation** Anemia Modalities **IMPROVED PATIENT OUTCOMES Optimizing** Patient-Centered **Decision Making** Coagulation

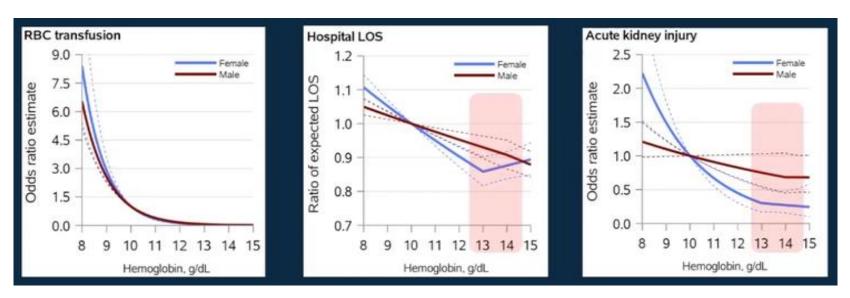
optimize pre-operative anemia, ...


evidence based indications for TXA (tranexamic acid),

improved (or stable) clinical outcomes, expose patients to less transfusion risk, ...

Prevalence of preoperative anemia

n= 3342 patients undergoing major surgery



- Overall prevalence of anemia = 36%
 ((Hb < 13 g/dL for both sexes)
- differences according to the type of surgery
- off anemic patients:
 - 62% had absolute Fe deficiency
 - 10% had Fe sequestration (chronic disease)

Impact of preoperative anemia

Preoperative anemia associated with **inferior outcome** after cardiac surgery

More RBC transfusion

Longer hospital stay

Higher risk of acute kidney injury

single unit policy

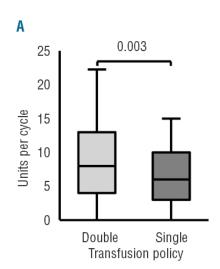
Single unit transfusion policy

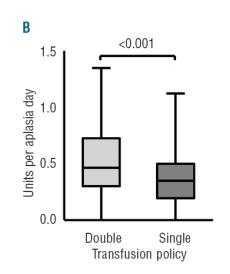
Stable, non-bleeding, hospitalized, adult patients with symptoms of anemia

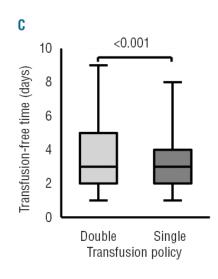
Transfuse

• patients with Hb concentrations close to the threshold should receive 1 RBC unit

and reassess


- then they should be reassessed **clinically** (did heart rate slow down, did blood pressure improve, etc)?
- and with a laboratory measurement of their Hb concentration following the transfusion of the first RBC unit.

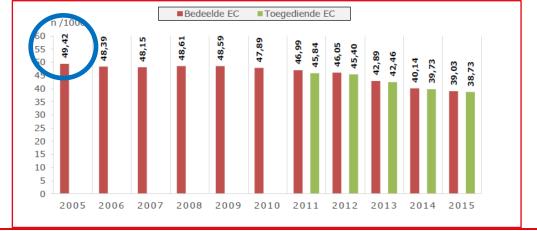

If the first unit did not lead to the desired improvement in clinical and/or in lab value, then they can have a second unit

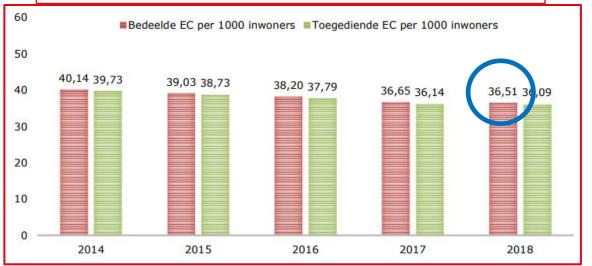

Single unit policy

25% reduction (-2.7 unit) of RBC transfusions per therapy cycle

24% reductionof RBC transfusions
per aplasia day

Median time between transfusions 20% shorter


Improvement of transfusion practice and reduction in red blood cell utilization in Belgian hospitals: Results of a national survey and benchmarking


```
Jana Vanden Broeck<sup>1,2</sup> | Katrien Beeckman<sup>3,4,5</sup> | Evelyne Van Gastel<sup>6</sup> |
Luc De Keersmaecker | Timothy Devos | Christiane Gérard | Lucien Noens |
Dominique Putzeys<sup>11</sup> | Karin Van Poucke<sup>12</sup> | Margareta Haelterman<sup>2</sup> |
Véronique Deneys<sup>13</sup> | Rik Schots<sup>1</sup>
```


Impact of PBM - evolution number ECL transfused in Belgium •

Bron: FAGG jaarverslag Hemovigilantie - 2018

Thank you for your attention!

timothy.devos@uzleuven.be

