A. Delie / UZ Gent / anke.delie@uzgent.be

Conditioning regimens before allogeneic stem cell transplantation

BHS Educational Course 16/03/2024

1. Introduction: Conditioning regimen

Preparative regimen administered prior to HSCT

preparing the patient to recieve the transplant'

Chemotherapy / Radiation / Antibodies

- Two key components:
 - Myelodepletion targets host stem cells
 - Busulfan, Melfalan, TBI
 - Lymfodepletion targets host lymphoid system
 - Fludarabine, Cyclofosfamide

1. Introduction: Goals of conditioning regimen

Eradicate hematologic malignancy

In case of malignant indication Myelodepletion (e.g. BU – MEL – TBI)

Supress host immunity

Ensure engraftment Prevent graft rejection

Provide stem cell niches Eradicate host hematopoiesis

Myeloablative

- Regimen causing irreversible pancytopenia in 'almost all' patients
- Classical regimens:
 - CY/TBI (IV Cyclofosfamide 60 mg/kg 2d 12 Gy TBI)
 - BU/CY (IV Cyclofosfamide 60 mg/kg 2d 4 mg/kg 4d Busulfan PO)
- Limited to younger patients in good medical conditioin
 - <55 sibling donors / <50 in unrelated donors
 - Transplant related toxicity (Non Relapse Mortality)
- Reduced Toxicity
 - Reducing toxicity without compromising SCT efficacy
 - e.g. Fludarabine with <u>myeloablative doses</u> of busulfan or treosulfan
 - Flu/Bu4
- Reduced intensity
 - Older patients
 - Patients with comorbidities
 - Heavily pre-treated patients
- Non Myeloablative

Common toxicities of standard MAC regimens

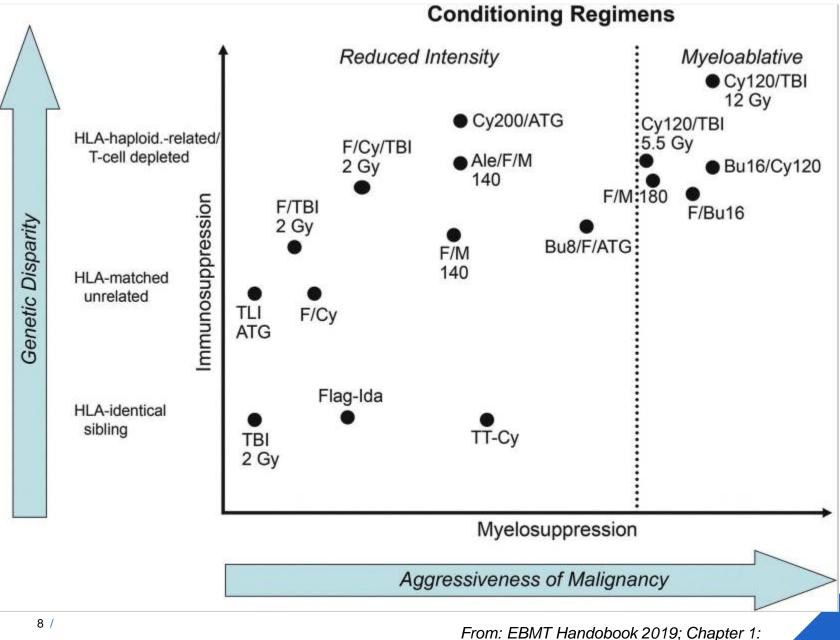
- Prolonged aplasia
 - Irreversible
 - Risk of infection
- GI toxicity
 - Mucositis
 - Nausea/vomiting
- Organ toxicities
 - VOD/SOS
 - Pnuemonitis
- Cytokine storm
 - Ridk of acute GvHd
- Long-term toxicities
 - Infertility
 - Gonadal dysfunction latrogenic menopauze/andropauze
 - Secondary malignancies

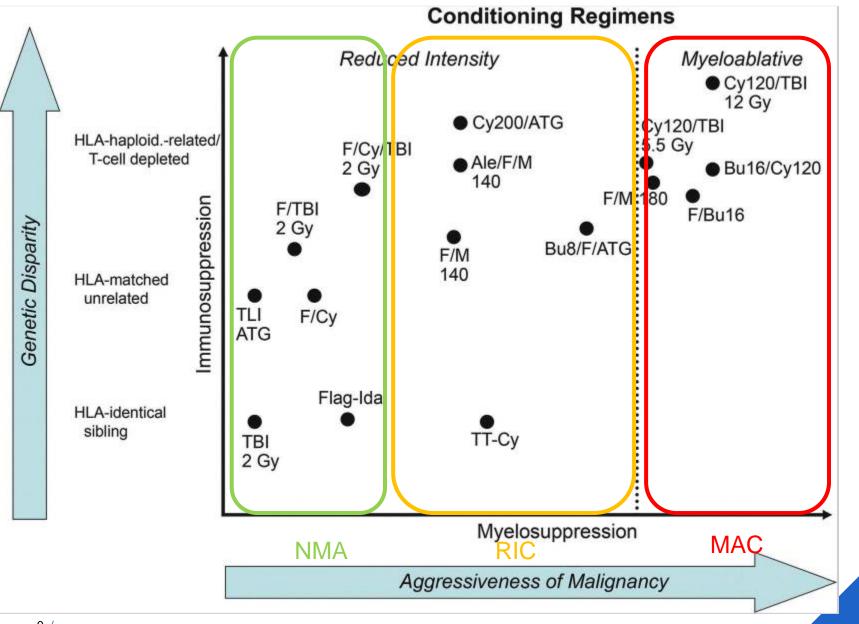
Reduced Intensity Conditioing

MYELOABLATION

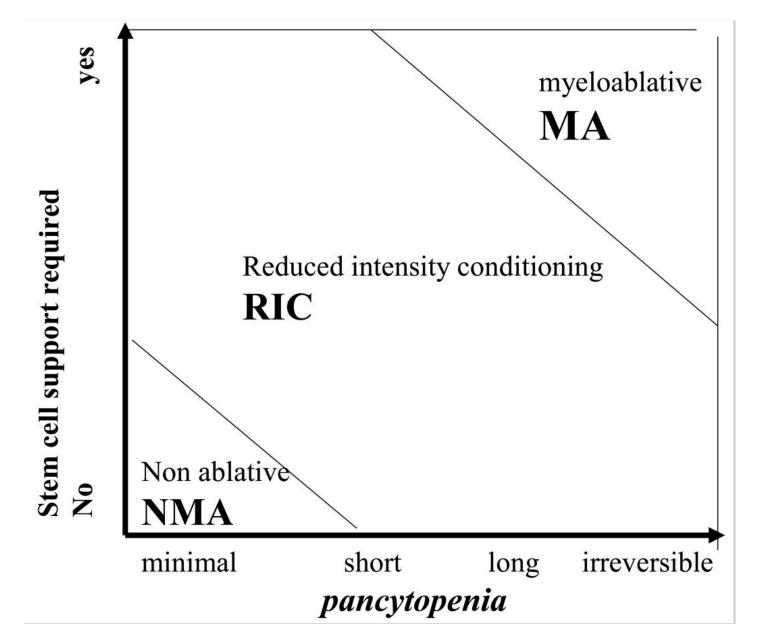
>

IMMUNOABLATION




GRAFT IMMUNE EFFECTS

Disease control > graft vs. tumor Engraftment > graft vs. hematopoiesis


Myeloablative (MA)	Nonmyeloablative (NMA)
TBI ≥5 Gy single dose or ≥8 Gy fractionated	TBI \leq 2 Gy± purine analog
Bu > 8 mg/kg PO or IV equivalent	Flu + Cy ± ATG
	Flu +AraC + Ida
	Cladribine + AraC
	Total Lymphoid Irradiation + ATG

From: EBMT Handobook 2019; Chapter 1: Historical Perspective, Storb R.

1. Introduction: Commonly used drugs

Total Body Irradation	
Antitumor effect	Yes
Myeloablation	Yes - Myeloablative if ≥5 Gy single dose ≥8 Gy fractionated
Immunosupression	Yes
Toxicity	Common toxicities of MAC Parotitis Thyroid damage Cataract
Cyclofosfamide	
Antitumor effect	Limited
Myeloablation	Limited
Immunosupression	Yes
Toxicity	 Hemorrhagic cystitis → hyperhydration + Mesna (if Cy dose > 1 g/m²) Cardiotoxicity (high dose) SIADH Pneumonitis (rare)

Busulfan / Melphalan	
Antitumor effect	Yes
Myeloablation	Yes – Myeloablative if: Bu ≥ 8mg/kg (or IV equivalent) Mel ≥ 150mg/m ²
Immunosupression	Limited
Toxicity	High dose: common toxicities of MAC Busulfan: Sinusoidal obstructive syndrome Pneumonitis (rare) Seizure Skin rash, melanodermia Metabolic disturbances: hyperglycemia, hyperuricemia, hypoK/Mg/PO4 Melphalan: Severe mucositis Pneumonitis (rare)

1. Introduction: Commonly used drugs

Fludarabine		Thiotepa	
Antitumor effect	Limited	Antitumor effect	Yes
Myeloablation	Limited	Myeloablation	Yes
Immunosupression	Yes	Immunosupression	Yes
Toxicity	Cholestasis Polyneuropathy Seizure, coma, toxic leukencephalopathy (rare) Pemphigus	Toxicity	High dose: common toxicities of MAC GI trouble, colitis Secondary neoplasms Leuco-encephalopathy

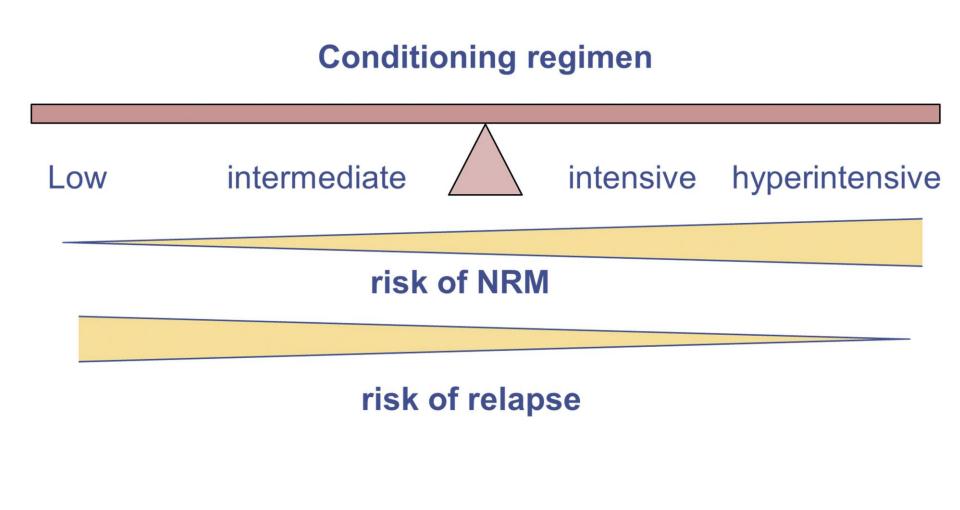
2. Choice of optimal conditioing regimen

Risk of toxicity

Age, PS, comorbidities, previous treatments

Risk of disease relapse Remission status, susceptibility to GvL effect, pevious treatments, graft source

Risk of graft rejection graft source Donor type Patient related factors Age, PS, comorbidities


Disease related factors

Type of disease, remission status, previous treatments, DRI

Graft related factors Graft source Donor type HLA match

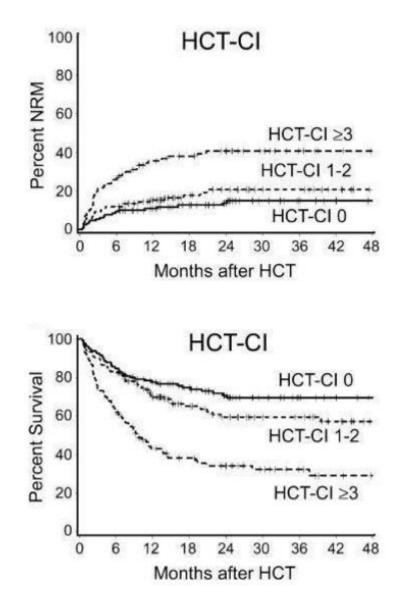
13 / VOETTEKST

2. Choice of optimal conditioing regimen

- Risk assessment of alloHSCT
 - Fit for HSCT vs. not fit for HSCT
 - Fit for MAC vs. fit for RIC/NMA
- Evaluate patients according to a pre-established work plan
 - Analyse individual risk factors for HSCT
 - Institution based assessment plan
- Impact of several pre-transplant variables on the results of AlloHSCT
 - No one factor individually is sufficient to predict results
- Predictive models
- Patients with high risk of NRM should be considered for RIC or NMA

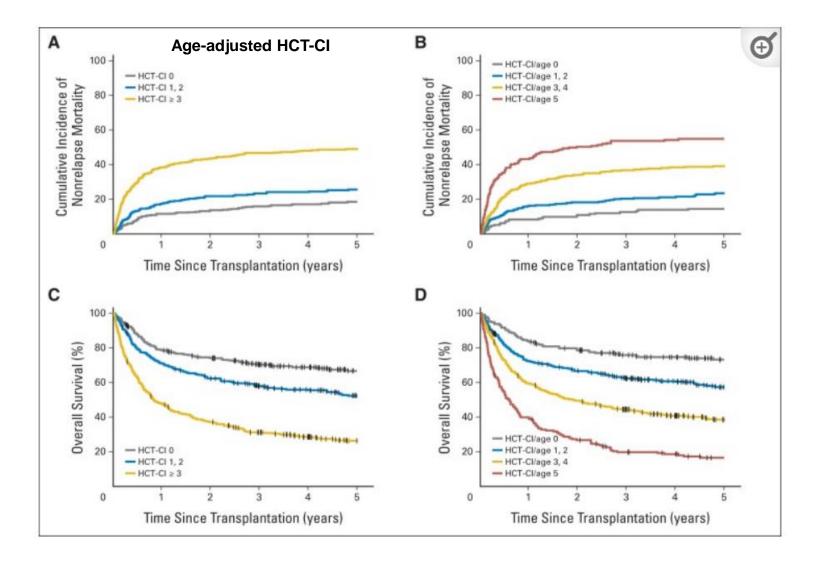
2. Choice of optimal conditioing regimen

- No one factor individually is sufficient to predict results
- Variables that have prognostic value in ALL predictive models
 - Age
 - General condition
 - Karnofsky <80%
 - Disease
 - not in remission
 - Type of donor
 - HLA identical sibling
 - Other
 - HLA compatibility
 - HLA-A, HLA-B- HLA-C and DRB1 difference
 - CMV serology
 - mismatch between donor/recipient
 - Donor
 - Donor age >35-40
 - Female donor for male recipient (> multiparous female)
 - Comobidities → HCT-CI
 - Presence of iron overload
 - Expierience of the center



2. Choice of optimal conditioing regimen - Patient

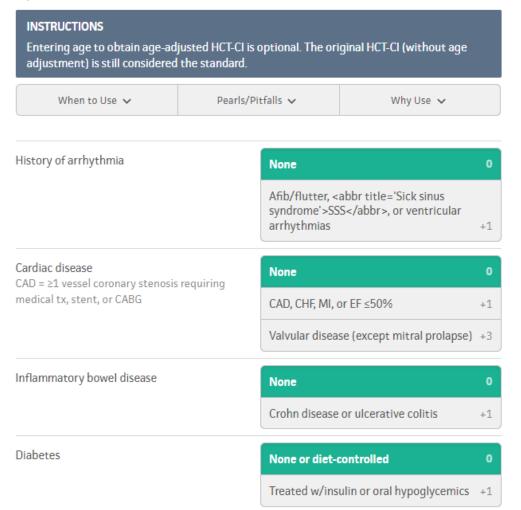
- Use of predictive models
 - HCT-CI
 - EBMT Risk Score
 - Disease Risk Index
 - EBMT machine learning algorithm
 - > All have a limited predictive value
 - No one model stands out
- Allow for realistic approach and assessment of risks
 - Help guide choice 'fitness' for transplant
 - Help guide choice for RIC vs. MAC conditioning
 - Adapt transplant procedure to patient needs


- 2. Choice of optimal conditioing regimen Patient
 - Hematopoietic stem cell transplantation-comorbidity index (HCT-CI)
 - Predict NRM and OS post HSCT
 - Stratifying patients into 3 specific risk groups corelated with 2 year NRM and OS
 - low (0 points)
 - interlmediate (1-2)
 - High (>3)
 - Tool to measure organ dysfunction prior to HSCT
 - Capture magnitude of organ damage
 - Assesses the presence and degree of 17 comobidities
 - Tool for decision making in clinical practice (conditioing, graft source) and clinical studies
 - Age-adjusted HCT-CI
 - +1 point for patients \geq 40 yr
 - significantly improves predictive capacity

If HCT-CI $\geq 3 \rightarrow$ RIC or NMA (or not fit for HSCT)

Sorror M. et al. Blood 2005; 106:2912-2919

19 / VOETTEKST



Sorror et al. JCO 2014; 32(29):3249-56

Hematopoietic Cell Transplantationspecific Comorbidity Index (HCT-CI) 🕸

Predicts survival after HCT in patients with hematologic malignancies, including optional age adjustment.

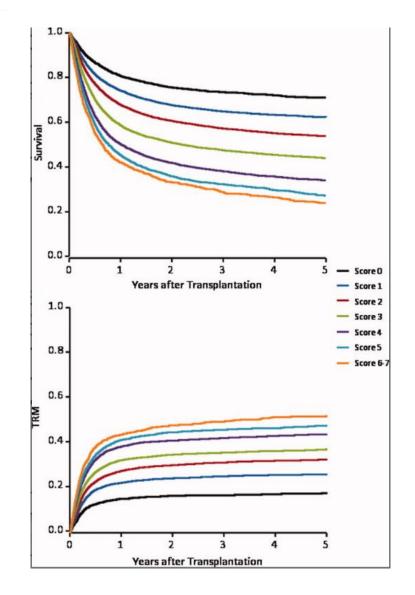
21 / VOETTEKST

2. Choice of optimal conditioing regimen - Patient

EBMT risk score (score 0-7)

- Predict 5-year probability of OS and TRM in most disease categories
- Based on five factors
 - Age of patient
 - Stage of the disease
 - Time from diagnosis
 - Donor type
 - Donor recipient gender combination
- Also useful in 2nd AlloSCT

Table 2. European Group for Blood and MarrowTransplantation Risk Score Definition


Risk Factor	Score Point
Age of the patient, y	
<20	0
20-40	1
>40	2
Disease stage*	
Early	0
Intermediate	1
Late	2
Time interval from diagnosis to transplant, m	o †
<12	0
>12	1
Donor type	
HLA-identical sibling donor	0
Unrelated donor	1
Donor-recipient sex combination	
All other	0
Donor female, male recipient	1

HLA indicates human leukocyte antigen.

* See text for the definitions according to main disease category; does not apply for patients with severe aplastic anemia (score 0).

 $\dagger\,\text{Does}$ not apply for patients transplanted in first complete remission (score 0).

Gratwohl et al. Cancer 2009;115(20):4715-26.

Table 11.3 Probability (%) of TRM at 5 years applyingthe EBMT risk score

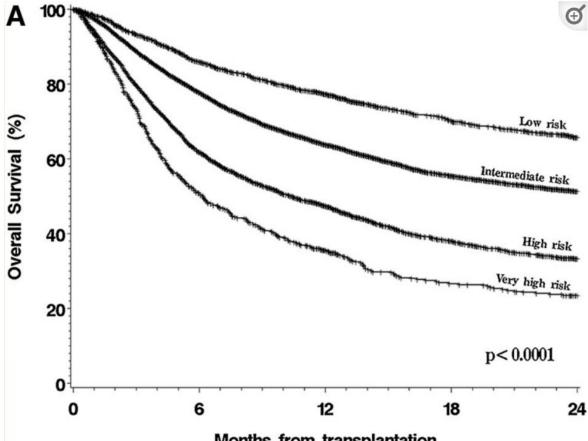
Points	0	1	2	3	4	5	6–7
AML	14	20	25	30	36	40	41
ALL	15	23	24	30	40	47	53
CML	15	22	30	38	45	52	55
AA	18	26	40	49	52		
MDS	25	28	30	35	38	46	50
MM			29	35	40	42	52
NHL	15	24	28	30	34	36	38

Extracted from Gratwohl (2009)

Table 11.4 Probability (%) of OS at 5 years applying theEBMT risk score

Points	0	1	2	3	4	5	6–7
AML	68	59	52	38	30	23	18
ALL	66	52	43	38	22	16	14
CML	76	72	60	51	39	26	14
AA	81	72	60	49	45		
MDS	56	52	46	40	35	28	25
MM			48	40	36	22	17
NHL	75	59	50	48	43	40	38

Extracted from Gratwohl (2009)

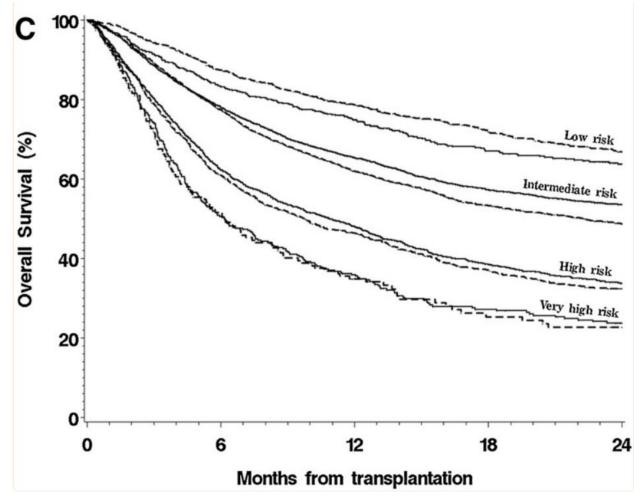

From: EBMT Handbook 2019; Chapter 11: Evaluation and Counseling of Candidates; Enric Carreras.

2. Choice of optimal conditioing regimen - Patient

Disease Risk Index (DRI)

- Based on disease and disease status
- Stratification into 4 groups
 - Low
 - Intermediate
 - high
 - very high
- Significantly different OS and PFS
- based on differences in relapse risk
- INDEPENDANT of HCT-CI and conditioning intensity

Months from transplantation


OS stratified by DRI

2 year OS

- Low risk 64%
- Intermediate risk 51%
- High risk 34%
- Very high risk 24%

(Armand et al. 2014)

OS stratified by DRI and conditioing intensity

(Armand et al. 2014)

Risk	Disease				
Low	AML with favorable cyt., CLL, CML, indolent B-cell NHL				
Intermediate	AML intermediate cyt., MDS intermediate cyt., myeloproliferative neoplasms, MM, HL, DLBCL/ transformed indolent B-NHL, MCL, T-cell lymphoma nodal				
High		e cyt, MDS ad oma extranoda	•		
Risk	Stage				
Low	CR1, CR \geq 2, PR1, untreated, CML CP, PR \geq 2 (if RIC)				
High	$PR \ge 2$ (if MAC), induction failure, active relapse, CML AP or BP				
Disease risk	Stage risk	Overall risk	OS at 4 years		
Low	Low	Low	64% (56–70%)		
Low	High Intermediate 46%				
Intermediate					
Intermediate	High	High	26%		
High	Low (21–31%)				
High	High	Very high	6 (0–21%)		

Table 11.1 Disease risk index (Armand 2012, 2014)

Adapted from Armand (2012). Cyt. cytogenetics

From: EBMT Handbook 2019; Chapter 11: Evaluation and Counseling of Candidates; Enric Carreras.

Disease Risk Index (DRI) Assignment Tool

CIBMTR > Resources > Research Tools & Calculators > Disease Risk Index (DRI) Assignment Tool

About the Disease Risk Index (DRI)

The Disease Risk Index (DRI) is a validated tool to categorize groups of patients undergoing allogeneic stem cell transplantation (HCT) for **hematologic malignancy** by disease risk. It is intended for research purposes to stratify patients in broad disease risk categories for retrospective or prospective studies.

View Publication Details

The DRI considers only disease-related parameters (i.e., disease, stage and, for

It does not consider patient-related variables such as age and co-

The DRI was developed using data in

https://cibmtr.org/CIBMTR/Resources/Research-Tools-Calculators/Disease-Risk-Index-DRI-Assignment-Tool

2. Choice of optimal conditioing regimen - Disease

GVT effect : graft vs. tumor

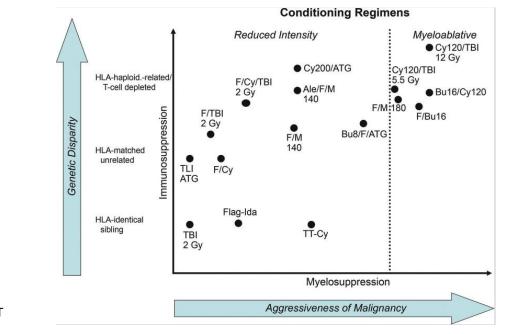
Susceptibility of disease to graft immune effect is variable

Highly sensitive	CML CLL Low-grade lymphoma Mantle cell lymphoma
Intermediate sensitivity	AML Intermediate-grade lymphoma Hodgkin's lymphoma Plasma cell myeloma
Relatively insensitive	ALL High-grade lymphoma

Pingali SR, Champlin RE BMT 2015;50(9):1157-67

2. Choice of optimal conditioing regimen - Disease

• RIC vs. MAC in specific disease?


- When does MAC imporve PFS/OS?
 - Data is limited and heterogeneic
 - Still to be decided
 - Review: Gagelmann et al. Haematologica 2021
- General concepts:
 - Indolent disease highly sensitive to GvT effects
 - RIC
 - Agressive disease, disease not in CR
 - MAC
- Alternative strategies?
 - Use of sequential conditioning regimens
 - FLAMSA-RIC (chemo or TBI based)
 - Use of post HSCT interventions
 - Maintenance
 - DLI

2. Choice of optimal conditioing regimen - Donor

Alternative donor source: MMUD / Haplo / MMUD

- high incidence of non-engraftment / graft rejection
- high TRM
 - major improvement with use of novel conditioing regimens
 - need for specific protocols
 - high degree of immunosupression / immunoablation

32 / VOETTEKST

3. Commonly used MAC regimens

	/		
МАС	Drug	Dose(total)	Schedule(d)
Traditional			
Cy/TBI	Су	120 mg/kg	- 6, - 5
	f-TBI	12 ~ 14 Gy	-3~-1 or -6~-1
Bu/Cy	Bu	16 mg/kg(po)or 12.8/kg(iv)	-7~-4
	Су	120 mg/kg	- 3, - 2

Cy: cyclophosphamide

F-TBI: fractionated total body irradiation (6 fractions of 2Gy; 1 or 2 fractions per day) Bu: Busulfan

3. Commonly used MAC regimens

TBI vs. Busumfan based MAC

- Lymphoid malignancies (eg ALL) : preference for TBI-based MAC
 - Penetrance to sanctuary sites SNC, testis
- Myeloid malignancies: ~ similar results with both regimens (IV Busulfan)
 - IV Busulfan not available in Belgium at this time (no commercialisation > imported from abroad with aditional costs)
 - Oral Bu: variable bioavailability (important inter- en intra-patient variability of AUCs)
 - variability in tumor response and toxicity (SOS/VOD)
 - PK monitoring for dose adjustment

3. Commonly used MAC regimens

TBI vs. Bu based MAC

- Lymphoid malignancies (eg ALL) : preference for TBI-based MAC
 - Penetrance to sanctuary sites SNC, testis
- Myeloid malignancies: ~ similar results with both regimens (IV Busulfan)
 - IV Busulfan not available in Belgium at this time (no commercialisation > imported from abroad with aditional costs)
 - Oral Bu: variable bioavailability (important inter- en intra-patient variability of AUCs)
 - variability in tumor response and toxicity (SOS/VOD)
 - PK monitoring for dose adjustment

3. Commonly used RIC/NMA regimens

Conditioning regimen	Drug	Dose (total)	Schedule(d)
International regimen			
Flu/Mel	Flu	150 mg/m ²	-7~-3
	Mel	100 - 140 mg/m ²	- 2, - 1
Flu/Bu	Flu	150 mg/m ²	- 9 ~ - 5
«Slavin regimen»	Bu	8~ 10 mg/kg (po)	$-6 \sim -4$
Flu/TBI	Flu	90 mg/m ²	- 4 ≈ -
«Seattle regimen»	2		
	TBI	2 – 4 Gy	0
		an, Due Duculfan, TDI, total hadu	time disting

Flu: Fludarabine; Mel: Melphalan; Bu: Busulfan; TBI: total body irradiation

3. Commonly used RIC/NMA regimens

Flu/Bu vs. Flu/Mel?

- No consensus
- Recent data suggest benefit for Flu/Mel in AML and MDS
- Meta-analysis: Jain et al. BBMT 2019; 25(4):728-733
 - OS and PFS were not statistically significantly different
 - OS was better with FM in subgroup analysis of AML/MDS studies
 - Nonrelapse mortality was lower with Flu/Bu
 - Relapse was lower with Flu/Mel

4. Use of Immunotherapy

Anti-T cell globulin (ATG)

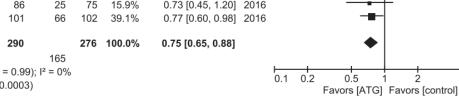
- Most widely used strategy for GvHD prevention in Europe
- Added to standard profylaxis with CNI and MTX or MMF
- 'In vivo' T-cel depletion
- Immunosupression

Rabbit ATG:

- Inoculation of rabbits with human thymocytes or human Jurkat cell line
 - Thymogobulin® (Sanofi) derived from rabbit vaccination with human thymocytes
 - Anti-T-lymphocyte globulin® (Neovii) derived from human Jurkat T-cell line
 - Different doses per specialty
 - No large studies comparing ATG-T vs. ATG-F > observed data cannot be automatically extended to the other formulation
- Reacts against host and donor lymphocytes
 - reduction of the risk of GvHD
 - prevention of graft failure
- Associated with delayed immune reconstitution
 - Potential increased risk of infections and relapse

Meta-analysis

(a)


6 RCTs 845 patients

ATG Control **Risk Ratio** Study or Subgroup Events Total Events Total Weight M-H, Fixed, 95% CI Year Finke 2009, Socie 2011 58 103 74 99 45.0% 0.75 [0.61, 0.92] 2011 0.73 [0.45, 1.20] 2016 Kroger 2016 21 86 25 75 15.9% Walker 2016 50 101 66 102 39.1% 0.77 [0.60, 0.98] 2016 Total (95% CI)

 Total events
 129
 165

 Heterogeneity: Chi² = 0.03, df = 2 (P = 0.99); l² = 0%
 Test for overall effect: Z = 3.59 (P = 0.0003)

acute GVHD (all grade)

(b) chronic GVHD (all grade)

	ATG	6	Contr	ol	Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI Year	M-H, Fixed, 95% Cl
Bacigalupo 2006	14	38	22	37	13.0%	0.62 [0.38, 1.02] 2006	
Bacigalupo 2010	9	84	22	86	12.7%	0.42 [0.20, 0.86] 2010	
Finke 2009, Socie 2011	27	90	40	80	24.7%	0.60 [0.41, 0.88] 2011	
Kroger 2016	23	86	48	75	29.9%	0.42 [0.28, 0.62] 2016	
Walker 2016	22	101	34	102	19.7%	0.65 [0.41, 1.04] 2016	·
Total (95% CI)		399		380	100.0%	0.54 [0.44, 0.66]	•
Total events	95		166				
Heterogeneity: Chi ² = 3.41, df = 4 (P = 0.49); l ² = 0%							
Test for overall effect: Z = 5.98 (P < 0.00001)						0.02 0.1 1 10 50 Favors [ATG] Favors [control]	

Arai et al. Leuk Lymphoma 2017;58(8):1840-1848

Risk Ratio

M-H, Fixed, 95% Cl

5

10

Meta-analysis

6 RCTs 845 patients

(a) OS				Hazard Ratio	Hazard Ratio
_	Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Fixed, 95% CI Ye	/ear IV, Fixed, 95% Cl
	Bacigalupo 2006	-0.0161	0.3957	13.9%	0.98 [0.45, 2.14] 20	006
	Bacigalupo 2010	-0.2827	0.323	20.9%	0.75 [0.40, 1.42] 20	010
	Finke 2009, Socie 2011	-0.2193	0.3049	23.4%	0.80 [0.44, 1.46] 20	011
	Kroger 2016	0.3001	0.4087	13.0%	1.35 [0.61, 3.01] 20	016
	Walker 2016	-0.3285	0.275	28.8%	0.72 [0.42, 1.23] 20	016
	Total (95% CI)			100.0%	0.85 [0.63, 1.13]	•
Heterogeneity: Chi ² = 1.95, df = 4 (P = 0.74); $I^2 = 0\%$ Test for overall effect: Z = 1.14 (P = 0.25)						0.1 0.2 0.5 1 2 5 10 Favors [ATG] Favors [control]

(b) Relapse	ATG	Control		Risk Ratio	Risk Ratio		
Study or Subgroup	Events Tota	al Events Tot	al Weight	M-H, Fixed, 95% Cl Year	M-H, Fixed, 95% Cl		
Bacigalupo 2001A	3 2	9 3 2	25 3.5%	0.86 [0.19, 3.90] 2001A			
Bacigalupo 2001B	10 2	7 5 2	28 5.3%	2.07 [0.81, 5.28] 2001B			
Bacigalupo 2010	24 8	4 21 8	36 22.4%	1.17 [0.71, 1.93] 2010			
Finke 2009, Socie 2011	34 10	3 28 9	99 30.8%	1.17 [0.77, 1.77] 2011	_ +=		
Kroger 2016	27 8	3 18 7	72 20.8%	1.30 [0.78, 2.16] 2016			
Walker 2016	10 10	1 16 10	02 17.2%	0.63 [0.30, 1.32] 2016			
Total (95% CI)	42	7 41	2 100.0%	1.14 [0.90, 1.45]	•		
Total events	108	91					
Heterogeneity: $Chi^2 = 4.44$, df = 5 (P = 0.49); $l^2 = 0\%$ 0.1 0.2 0.5 1 2 5							
Test for overall effect: Z =	0.1 0.2 0.5 1 2 5 10 Favors [ATG] Favors [control]						

Arai et al. Leuk Lymphoma 2017;58(8):1840-1848

Expert recommendations

Table 2 Final recommendations.

Conditioning regimen	Stem cell source	Donor	Recommendation	Agreement among experts	
MALIGNANT DISEASES					
Myeloablative	Bone marrow/ peripheral blood	Unrelated	Recommended	Full	
Myeloablative	Peripheral blood	HLA-identical sibling	Recommended	Partial	
RIC/NMA	Bone marrow/ peripheral blood	HLA-identical sibling/matched or mismatched unrelated	Partially recommended	Partial	
Any conditioning plus post-transplant cyclophosphamide	Bone marrow/ peripheral blood	Haploidentical	Undecidable	Full	
Any conditioning without post- transplant cyclophosphamide)	Bone marrow/ peripheral blood	Haploidentical	Advised to follow the conditioning published protocols	Full	
Any conditioning	Cord blood transplant	Cord blood	Undecidable	Full	
NON-MALIGNANT DISEASES					
Any conditioning	Any stem cell source		Recommended	Full	

RIC reduced intensity conditioning, NMA nonmyeloablative conditioning.

Bonifazi et al. BMT 2020; 55:1093-1102

4. Use of Immunotherapy

Anti-T cell globulin (ATG)

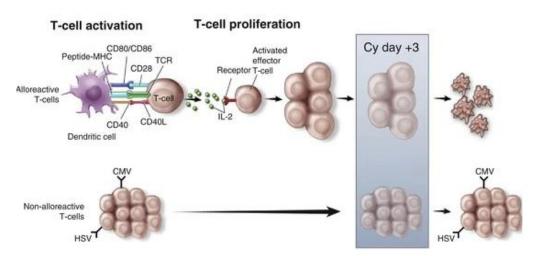
ATG	
Antitumor effect	No
Myeloablation	Νο
Immunosupression	Yes
<u>Toxicity</u>	Infusion reaction: Fever, chills, pruritus, rash, bronchospasm, hypotension, anaphylaxis Late: serum sickness Pancytopenia Hemolysis

4. Use of Immunotherapy

Alemtuzumab

- Humanised anti-CD52 IgG1 mAB
 - CD52 expressed by lymphoctes, monocytes, dendritic cells...
 - T- cell depletion
- Durable engraftment
- Decreased risk of chronic GvHd
- Decreased TRM
- Increased disease relapse due to impaired GvM effect
 - Decreased PFS
- Slower immune reconstitution
 - Risk of opportunistic infections

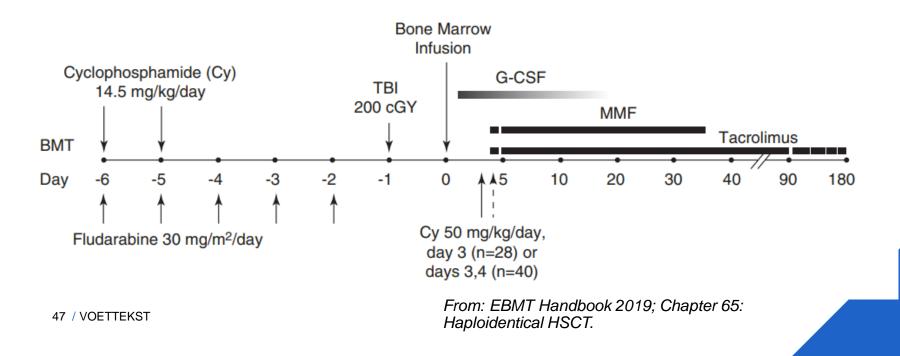
- Major HLA-mismatched setting
 - Risk of GvHd 1
 - Risk of graft rejection / non engraftment
- Challenges:
 - Primary prevention and treatment of GvHD
 - Prevention of graft rejection
- Use of novel conditioning regimens and transplant aproaches
 - Ex-vivo T cel depletion
 - Unmanipulated graft transplantation
 - ATG based
 - PTCy based
 - (ATG + PTCy based)


Post-transplant Cyclophosphamide

- Selective depletion of 'alloreactive' host and donor T-cells
 - Activated by HLA molecules on the surface of donor and recipient antigen-presenting cells
 - Prevention of graft rejection and GvHD
- Delay in Cy administration allows host and donor cells to react to foreign HLA
- Non-alloreactive Tcells relatively quiescent
 - Predominance of effector memory Tcells
 - Persistence of FoxP3+ regulatory T-cells
- Intra-thymic clonal deletion (dendritic cells)

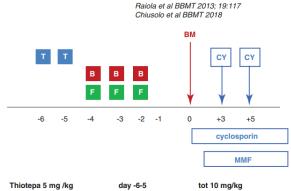
Post-transplant Cyclophosphamide

- Alloreactive T-cells activated by HLA-molecules of donor and recipient APCs
 - Proliferation leads to sensitivity to Cyclofosfamide
 - Selective depletion of alloreactive Tcells
- Non-alloreactive T-cells relatively quiescent
 - Relatively resistant to Cyclofosfamide
 - Survive to establish periferal Tcell pool / immune reconstitution



Haploidentical Transplantation 2018, chapter 7, Posttransplant Cyclophosphamide in Haploidentical Transplantation.

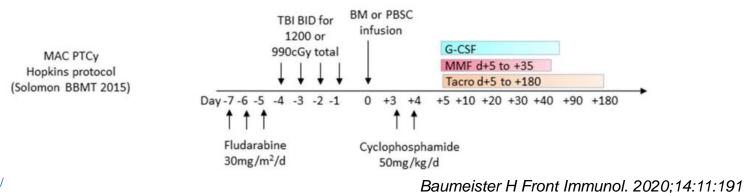
Post-transplant Cyclophosphamide


Initial approach RIC with BM grafts

- Pioneered by the Baltimore group
- Flu/Cy/TBI + PTCy
- Introduction of MAC and PB in time

MAC Regimens

TBF (Thiotepa/Busulfan/Flu + PTCy)


 Thiotepa 5 mg /kg
 day -6-5
 tot 10 mg/kg

 Fludarabine 50 mg/m^2
 day 4-3-2
 tot 150 mg/m^2

 Busulfan 3.2 mg/kg q24h
 day -4-3-2
 tot 9.6 mg/kg

From: EBMT Handbook 2019; Chapter 65: Haploidentical HSCT.

Hopkins protocol

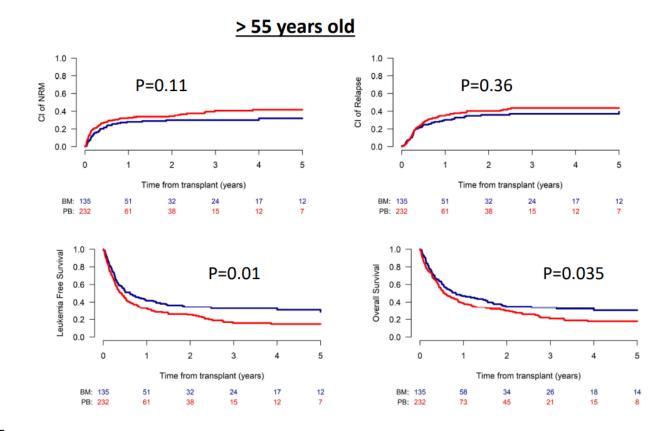
PTCy vs. ATG

- Comparison in AML patients (Ruggeri et al. Haematologica 2017;102(2): 401–410.)
- Less grade 3-4 acute graft-versus-host disease
- Comparable rates of cGvHd
- Lower non relapse mortality
- No difference in relapse incidence
- better GRFS and LFS, trend for higher OS


PBSC vs. BM

- EBMT registry study (Ruggeri et al. 2018)
 - Increased acute GvHD II–IV and III–IV
 - Same chronic GvHD, same relapse, and same 2-year OS
- CIBMTR registry study (Bashey et al. 2017)
 - Increased GvHD II–IV, but not III–IV
 - increased chronic GvHD
 - reduced relapse
 - Similar 2y OS
- ▶ EBMT registry study in R/R AML (Baron et al. 2020)
 - Higher incidence of grade II–IV and grade III–IV acute GVHD
 - Patients <55 years: comparable LFS
 - Patients ≥55 years of age
 - Higher non-relapse mortality
 - Lower LFS
 - Lower overall survival

PBSC vs. BM


- Baron et al 2020
- Patients <55 yr, R/R AML</p>

51 / VOETTEKST

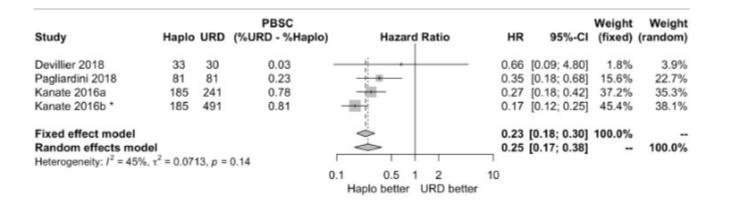
PBSC vs. BM

- Baron et al 2020
- ▶ Patients ≥55 yr R/R AML

Haplo vs. MUD

Meta-analysis 20 observational studies (1783 Haplo / 6077 MUD)

OS


Study	Haplo	URD	Hazard Ratio	HR	95%-CI	Weight (fixed)	Weight (random)
Burroughs 2008	28	24		0.43	[0.20; 0.92]	2.2%	2.2%
Ciurea 2015a	88	737		1.36	[1.00; 1.85]	13.9%	13.9%
Ciurea 2015b	104	1245		1.12	[0.83; 1.51]	14.6%	14.6%
Bashey 2016	116	178		0.86	[0.57; 1.30]	7.7%	7.7%
Kanate 2016a	185	241	-#-	1.05	[0.75; 1.47]	11.6%	11.6%
Kanate 2016b *	185	491	-	1.25	[0.93; 1.69]	14.5%	14.5%
Rashidi 2016	52	88		0.84	[0.40; 1.76]	2.4%	2.4%
Martinez 2017	98	273		1.21	[0.64; 2.28]	3.3%	3.3%
Bashey 2018	33	57		0.93	[0.44; 1.97]	2.3%	2.3%
Brissot 2018a	199	1111		0.92	[0.67; 1.26]	13.0%	13.0%
Brissot 2018b *	199	383		1.03	[0.74; 1.43]	12.0%	12.0%
Devillier 2018	33	30		- 1.21	[0.15; 9.75]	0.3%	0.3%
Pagliardini 2018	81	81		0.89	[0.41; 1.93]	2.2%	2.2%
Fixed effect model			\$	1.06	[0.95; 1.19]	100.0%	
Random effects model			\$	1.06	[0.95; 1.19]		100.0%
Heterogeneity: $I^2 = 0\%$,	$\tau^2 = 0, p =$	0.46					
Fixed effect model			•	1.06	[0.95; 1.19]	100.0%	
Random effects model			\$		[0.95; 1.19]		100.0%
Heterogeneity: $I^2 = 0\%$,		0.46		0.000			
Residual heterogeneity:			0.2 0.5 1 2 5 Haplo better URD better				

Arcuri et al. BBMT 2019; 25(12):2422-2430

Haplo vs. MUD

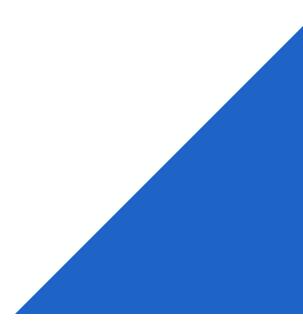
Meta-analysis 20 observational studies (1783 Haplo / 6077 MUD)

▶ cGvHD

Arcuri et al. BBMT 2019; 25(12):2422-2430

6. Key References

- EBMT Handbook
- Bacigalupo et. al BBMT 2009; 15(12):1628-33
- Sorror et al. JCO 2014; 32(29):3249-56
- Pingali SR, Champlin RE BMT 2015;50(9):1157-67
- Gagelmann et al. Haematologica 2021; 106 (7): 1794-1804
- Jain et al. BBMT 2019; 25(4):728-733
- Bonifazi et al. BMT 2020; 55:1093-1102
- Baumeister H Front Immunol. 2020;14:11:191



ANKE DELIE Adjunct kliniekhoofd Hematologie Anke.Delie@uzgent.be

Universitair Ziekenhuis Gent C. Heymanslaan 10 | B 9000 Gent T +32 (0)9 332 21 11 E info@uzgent.be

www.uzgent.be Volg ons op

