
## Amyloidosis

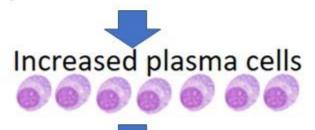
Isabelle Vande Broek



## **Defining Systemic Amyloidosis**

- Protein misfolding disorder
- Amyloid = highly organized protein fibrils, insoluble and degradation-resistant
- Extracellular deposition of amyloid leads to organ dysfunction
- To date, 36 different proteins have been identified as amyloidogenic; at least 14 of them can cause systemic disease




#### **PATHOGENESIS**

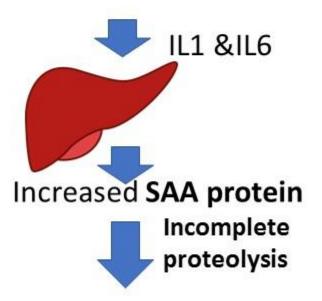
Normal proteins, when produced in **abnormal numbers** 

Acquired mutation



Monoclonal B lymphocyte proliferation



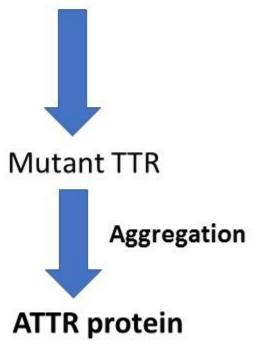

Immunoglobulin light chains Incomplete proteolysis

AL protein

Chronic Inflammation



Macrophages activation

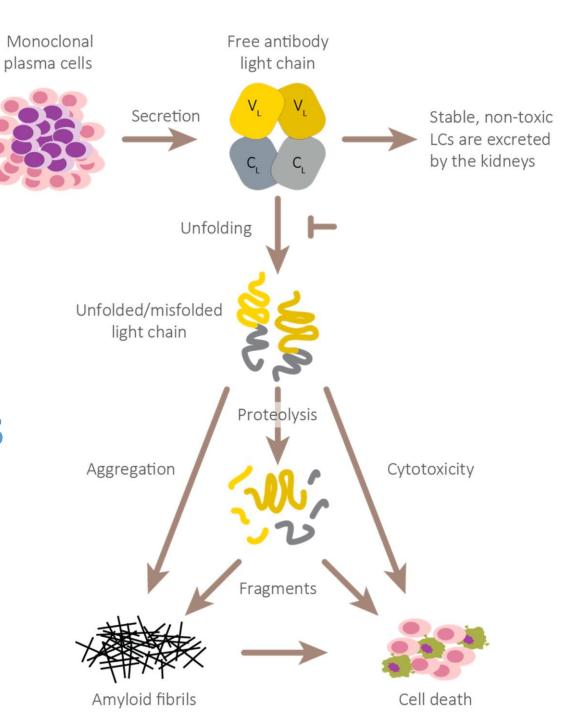



AA protein

Production of normal amounts of **mutant proteins** 

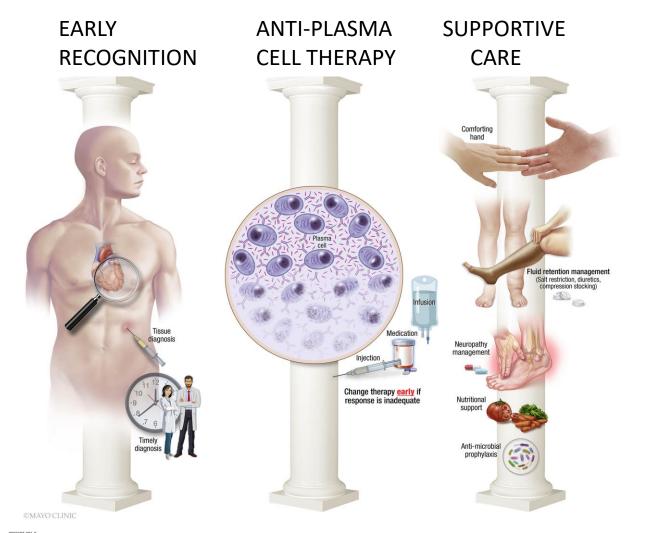
Eg: Transthyretin (TTR)

Mutation




AMYLOIDOSIS

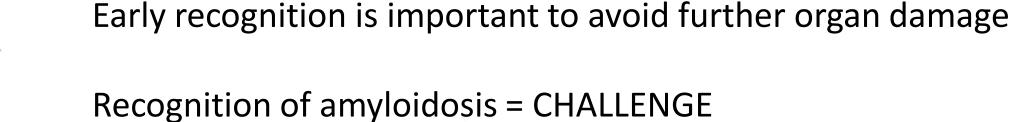
| Type of amyloidosis                                             | Precursor protein component                                                    | Clinical presentation                                                                                                                                                                  |  |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| AL <sup>a</sup> (previously referred to as primary amyloidosis) | κ or λ immunoglobulin light chain                                              | Systemic or localized; see text                                                                                                                                                        |  |
| AH .                                                            | $\gamma$ , $\mu$ , $\alpha$ , $\delta$ , $\epsilon$ immunoglobulin heavy chain | Systemic or localized; see text                                                                                                                                                        |  |
| ATTR                                                            |                                                                                |                                                                                                                                                                                        |  |
| Wild-type ATTR <sup>b</sup> (age-related amyloidosis)           | Normal transthyretin                                                           | Restrictive cardiomyopathy; carpal tunnel syndrome<br>Lumbar spinal stenosis<br>Biceps tendon rupture                                                                                  |  |
| Variant ATTR <sup>b</sup> (also referred to as hereditary ATTR) | Mutant transthyretin                                                           | Polyneuropathy phenotype, cardiomyopathy phenotyp<br>and mixed phenotype; leptomeningeal involvement;<br>vitreous opacities                                                            |  |
| AA (previously referred to as secondary amyloidosis)            | Serum amyloid A                                                                | Renal presentation most common; associated with chro<br>inflammatory conditions; underlying disease is typica<br>acquired, but hereditary in case of familial periodic fe<br>syndromes |  |
| ALECT2                                                          | Leukocyte chemotactic factor 2                                                 | Acquired; renal or liver presentation                                                                                                                                                  |  |
| Αβ2Μ                                                            | $\beta_2$ -microglobulin                                                       | Acquired in patients on long-term dialysis; carpal tunno syndrome, large joint arthropathy                                                                                             |  |
| AApoA-IV                                                        | Apolipoprotein A-IV                                                            | Acquired; renal or cardiac amyloidosis                                                                                                                                                 |  |
| are hereditary amyloidosis types                                |                                                                                |                                                                                                                                                                                        |  |
| AGel; also known as familial amyloidosis, Finnish type          | Gelsolin                                                                       | Triad of corneal lattice dystrophy, facial nerve paralysis, a cutis laxa                                                                                                               |  |
| AFib                                                            | Fibrinogen α-chain                                                             | Usually renal presentation                                                                                                                                                             |  |
| ALys                                                            | Lysozyme                                                                       | Sicca syndrome, renal dysfunction, liver or spleen ruptur gastrointestinal ulcers                                                                                                      |  |
| AApoA-I                                                         | Apolipoprotein A-l                                                             | Mutation-dependent, can affect various organs                                                                                                                                          |  |
| AApoA-II                                                        | Apolipoprotein A-II                                                            | Renal amyloidosis                                                                                                                                                                      |  |
| AApoC-II                                                        | Apolipoprotein C-II                                                            | Renal amyloidosis                                                                                                                                                                      |  |
| AApoC-III                                                       | Apolipoprotein C-III                                                           | Renal amyloidosis, sicca syndrome                                                                                                                                                      |  |


<sup>&</sup>lt;sup>a</sup>AL/AH amyloidosis is the only form of amyloidosis that is secondary to a clonal plasma cell disorder. AL amyloidosis can be associated with multiple myeloma or more rarely with other B-cell—secreting disorders.

<sup>&</sup>lt;sup>b</sup>TTR refers to transthyretin, previously known as prealbumin.



AL amyloidosis


# How we diagnose & manage AL amyloidosis: 3 fundamental pillars to improve outcome



Cibeira et al. Blood 2011 Muchtar et al. Br J Haematol 2019 Sidana et al. Am J Hematol 2019

### Management of amyloidosis

## Pillar 1: Early recognition

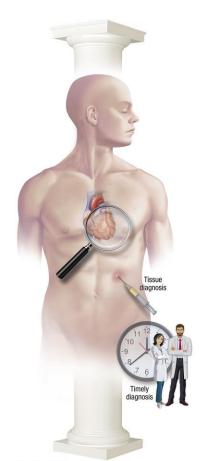


< non – specific symptoms

< heterogeneity in presentation

Many specialists can be involved

#### **FACTS:**


- Median time from symptom onset to diagnosis = 6-12 m
- 3-4 physicians visited before diagnosis is established
- Misdiagnosis = not uncommon.

Further contributes to diagnosis delay!

Lousada et al. Adv Ther 2015

Kourelis et al. Am J Haematol 2014

McCausland et al. Patient 2018



## EM-93892

## **Presentation and Organ involvement**

Cerebral hemorrhage, stroke, dementia

Macroglossia

Orthostatic hypotension

Dyspnea, cough

Hepatomegaly, hepatic failure

Fatigue, anorexia, weight loss

GI dysmotility, malabsorption, ulceration, GI bleeding

Easy bruising

Nail dystrophy

Muscle weakness

Painful paresthesia

Periorbital purpura Impaired vision

Jaw claudication, xerostomia, submandibular swelling

Dysphagia, hoarseness

Heart failure, arrhythmias, conduction abnormalities, syncope, hypotension, chest pain

Hyposplenism

Proteinuria, nephrotic syndrome, renal failure

Carpal tunnel syndrome

Urinary retention, erectile dysfunction

Ankle edema

Most common symptom (80%)

## **Presentation and Organ involvement**

Cerebral hemorrhage, stroke, dementia

Macroglossia

Orthostatic hypotension

Dyspnea, cough

Hepatomegaly, hepatic failure

Fatigue, anorexia, weight loss

GI dysmotility, malabsorption, ulceration, GI bleeding

Easy bruising

Nail dystrophy

Muscle weakness

Painful paresthesia

Periorbital purpura Impaired vision

Jaw claudication, xerostomia, submandibular swelling

Dysphagia, hoarseness

Heart failure, arrhythmias, conduction abnormalities, syncope, hypotension, chest pain

Hyposplenism

Proteinuria, nephrotic syndrome, renal failure

Carpal tunnel syndrome

Urinary retention, erectile dysfunction

Ankle edema

## **Presentation and Organ involvement**

Cerebral hemorrhage, stroke, dementia

Macroglossia

Orthostatic hypotension

Dyspnea, cough

Hepatomegaly, hepatic failure

Fatigue, anorexia, weight loss

GI dysmotility, malabsorption, ulceration, GI bleeding

Easy bruising

Nail dystrophy

Muscle weakness

Painful paresthesia

Periorbital purpura Impaired vision

Jaw claudication, xerostomia, submandibular swelling

Dysphagia, hoarseness

Heart failure, arrhythmias, conduction abnormalities, syncope, hypotension, chest pain

Hyposplenism

Proteinuria, nephrotic syndrome, renal failure

Carpal tunnel syndrome

Urinary retention, erectile dysfunction

Most common involved organs (60-80% of patients):

- Heart
- <u>Kidneys</u>

Ankle edema

## EM-93892

## **Presentation and Organ involvement**

Cerebral hemorrhage, stroke, dementia

Macroglossia

Orthostatic hypotension

Dyspnea, cough

Hepatomegaly, hepatic failure

Fatigue, anorexia, weight loss

GI dysmotility, malabsorption, ulceration, GI bleeding

Easy bruising

Nail dystrophy

Muscle weakness

Ankle edema

Periorbital purpura Impaired vision

Jaw claudication, xerostomia, submandibular swelling

Dysphagia, hoarseness

Heart failure, arrhythmias, conduction abnormalities, syncope, hypotension, chest pain

Hyposplenism

Proteinuria, nephrotic syndrome, renal failure

Carpal tunnel syndrome

Urinary retention, erectile dysfunction

Most common involved organs (60-80% of patients):

#### **Heart**

- Typical echocardiographic findings
  - ✓ Thickened heart walls
  - ✓ Rectrictive filling pattern
- Elevated soluble cardiac biomarkers (Troponin & NatriumProBNP)

Painful paresthesia

## **Presentation and Organ involvement**

Cerebral hemorrhage, stroke, dementia

Macroglossia

Orthostatic hypotension

Dyspnea, cough

Hepatomegaly, hepatic failure

Fatigue, anorexia, weight loss

GI dysmotility, malabsorption, ulceration, GI bleeding

Easy bruising

Nail dystrophy

Muscle weakness

Painful paresthesia

Periorbital purpura Impaired vision

Jaw claudication, xerostomia, submandibular swelling

Dysphagia, hoarseness

Heart failure, arrhythmias, conduction abnormalities, syncope, hypotension, chest pain

Hyposplenism

Proteinuria, nephrotic syndrome, renal failure

Carpal tunnel syndrome

Urinary retention, erectile dysfunction

Most common involved organs (60-80% of patients):

#### **Kidneys**

- Proteinuria
- With or without renal failure

Ankle edema

#### **Presentation and Organ involvement**

Cerebral hemorrhage, stroke, dementia

Macroglossia

Orthostatic hypotension

Dyspnea, cough

Hepatomegaly, hepatic failure

Fatigue, anorexia, weight loss

GI dysmotility, malabsorption, ulceration, GI bleeding

Easy bruising

Nail dystrophy

Muscle weakness

Painful paresthesia

Periorbital purpura Impaired vision

Jaw claudication, xerostomia, submandibular swelling

Dysphagia, hoarseness

Heart failure, arrhythmias, conduction abnormalities, syncope, hypotension, chest pain

Hyposplenism

Proteinuria, nephrotic syndrome, renal failure

Carpal tunnel syndrome

Urinary retention, erectile dysfunction

Ankle edema

#### **Other organs involved:**

Nerve system (peripheral, autonomic)

Liver

Gastro intestinal tract

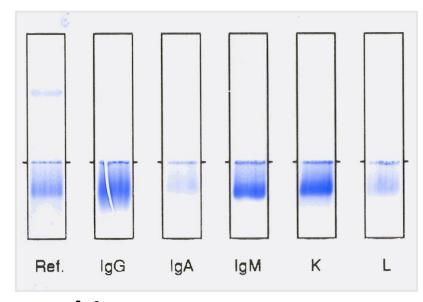
Muscles / Joints

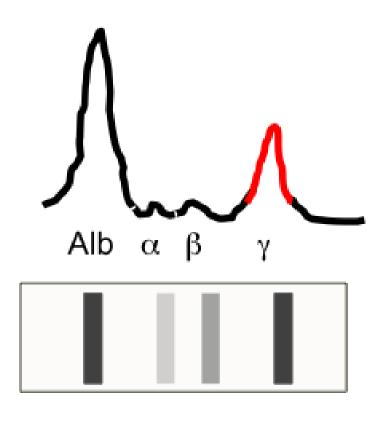
Clotting factor deficiencies (ex fX)

Skin

(spleen, lungs)

#### **Diagnosis of AL Amyloidosis**


• Diagnosis relies on demonstration of amyloid deposits on a tissue


sample

- Tissue source
  - Affected organ
  - Or a more accessible tissue:
    - ex subcutaneous fat
    - NOTE : Fat aspiration + BM biopsy : yields diagnosis in  $\sim 90\%$  of patients
  - CONGO Red staining = "gold standard"

#### **Evaluation of patients with AL amyloidosis**

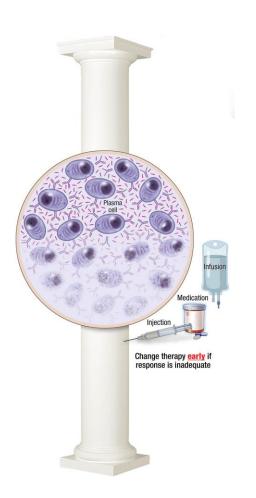
- Screening for a monoclonal protein
  - Serum electropheresis
  - Immunofixation
  - Serum Free Light Chain (FLC) assay





- Bone marrow biopsy
  - BM plasmacytosis: associated MM?
  - Exclude other B cell secretory diseases (Waldenstrom, NHL, CLL)
  - Demonstrate amyloid deposition

#### **Prognosis of amyloidosis**


- Prognosis depends on 2 compartments of the disease
  - 1. Organ involvement
    - ✓ Degree of heart involvement = most important predictor of short & long term survival
    - ✓ Number of involved organs and hepatic as well as autonomic involvement influence survival
  - 2. Underlying plasma cell clone
    - ✓ Predictor of long term survival
- Despite improvement in survival in recent years, proportion of patients dying within 6-12m of diagnosis remains fixed at 25%

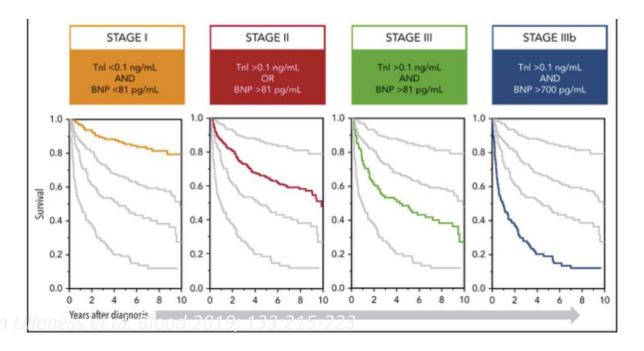
# Staging & Prognostic impact of organ damage

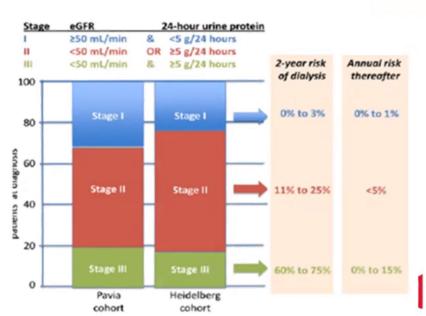
| Staging system | Markers and thresholds                  | Stages                          | Outcomes*                      |
|----------------|-----------------------------------------|---------------------------------|--------------------------------|
|                |                                         | I. no markers above the cutoff  | I. median survival not         |
|                |                                         | II. one marker above the cutoff | reached, 60% surviving 10      |
|                |                                         | IIIa. both markers above the    | years                          |
| CARDIAC        | NT-proBNP >332 ng/L cTnT                | cutoff and NT-proBNP <8500      | II. median survival 49         |
|                | >0.035  ng/mL  (or cTnI > 0.01          | ng/L                            | months                         |
| STAGING        | ng/mL)                                  | IIIb. both markers above the    | IIIa. median survival 14       |
|                |                                         | cutoff and NT-proBNP ≥8500      | months                         |
|                |                                         | ng/L                            | IIIb. median survival 5        |
|                |                                         |                                 | months                         |
|                |                                         | I. 0 markers above the cutoff   | I. median survival not         |
|                |                                         | II. 1 marker above the cutoff   | reached, 55% surviving 10      |
| REVISED        | NT-proBNP >1800 ng/L cTnT               | III. 2 markers above the cutoff | years                          |
| MAYO           | >0.025 ng/mL dFLC >180 mg/L             | IV. 3 markers above the cutoff  | II. median survival 57 months  |
| STAGING        |                                         |                                 | III. median survival 18 months |
|                |                                         |                                 | IV. median survival 6 months   |
|                |                                         | I. both eGFR above and          | I. 1% risk of dialysis at 2    |
|                |                                         | proteinuria below the cutoffs   | years                          |
| RENAL          | eGFR <50 mL/min per 1.73 m <sup>2</sup> | II. either eGFR below or        | II. 12% risk of dialysis at 2  |
| STAGING        | proteinuria >5 g/24h                    | proteinuria above the cutoffs   | years                          |
|                |                                         | III. both eGFR below and        | III. 48% risk of dialysis at 2 |
|                |                                         | proteinuria above the cutoffs   | years                          |

#### Management of amyloidosis

Pillar 2: Plasma-cel directed therapy

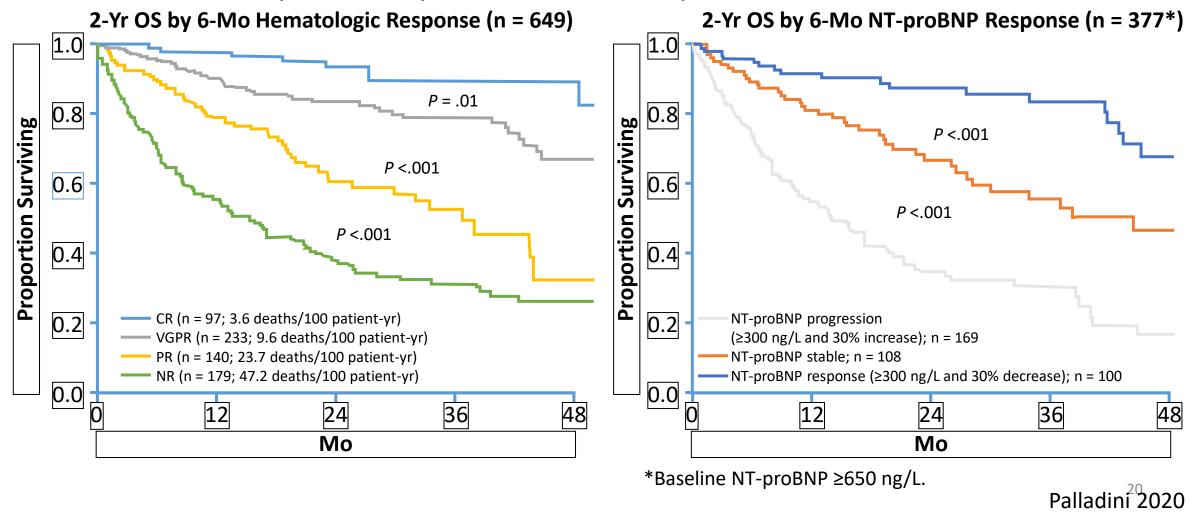



Mainstay of treatment = targeting the underlying PC clone


- → decrease amyloid deposition as source of tissue injury
- $\rightarrow \downarrow$  tissue injury &  $\uparrow$  organ recovery

Another approach: targeting amyloid deposits using monoclonal antibodies: has been investigated – non has yet reached a regulatory approval stage

### Treatment of amyloidosis: challenges


- **Early response is critical** to maximize organ recovery and survival Deep responses are **difficult** to achieve
- Organ responses are slow
- Patients with cardiac Al die even when in a deep hematological response A high proportion of renal stage II & III patients still progress to dialyse





# OS in Amyloidosis by Hematologic and Organ Response

Multicenter analysis of 816 patients with AL amyloidosis



#### **Goals for Therapy: recommendations**

#### HEMATOLOGICAL RESPONSE (HR)

- ✓ Goal of treatment = at least haematologic very good partial response (VGPR)

  = difference between involved aand unvolved light chains (dFLC)< 40 mg/L
  </p>
- ✓ Optimal response = CR : normalization of FLC ratio and negative immunofixation
  - But this has to be weighted against toxicity of therapy (so it can only be achieved in a limited number of pts)
  - So VGPR is a realistic treatment goal (can be achieved in 40-80% of pts with modern therapies)
- ✓ Patients who do not achieve at least PR after 2 cycles of VGPR after 4 cycles of therapy should be offered alternative therapy

#### ORGAN RESPONSE (OR)

- Prefered organ response = improvement of organ function to near normal value
- OR criteria are binary = response versus no response
- Lags behind HR with several months

# Overview: Hematologic and organ response criteria

| Response type                      | Criteria                                                                                                                               |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| Hematologic response <sup>63</sup> |                                                                                                                                        |  |
| Complete response                  | Negative serum and urine immunofixation and normal serum immunoglobulin κ/λ FLC ratio                                                  |  |
| Very good partial response         | dFLC <40 mg/L                                                                                                                          |  |
| Partial response                   | dFLC decrease of >50%                                                                                                                  |  |
| No response                        | Less than a partial response                                                                                                           |  |
| Organ response 19,63               |                                                                                                                                        |  |
| Cardiac response                   | Decrease of NT-proBNP by >30% and 300 ng/L (if baseline NT-proBNP >650 ng/L)                                                           |  |
| Renal response                     | At least 30% decrease in proteinuria or drop below 0.5 g/24 h, in the absence of renal progression, defined as a >25% decrease in eGFR |  |
| Hepatic response                   | 50% decrease in abnormal alkaline phosphatase value or decrease in radiographic liver size by at least 2 cm                            |  |

dFLC, difference between involved and uninvolved serum immunoglobulin free light chains (a value adequate to measure response is deemed to be 50 mg/L); eGFR, estimated glomerular filtration rate; FLC, free light chain; NT-proBNP, N-terminal brain natriuretic peptide.

## **Initial therapy**

Consider highdose + autoSCTin selected pts

Risk adapted : select candidates for SCT

#### **Mayo Eligibility Criteria for ASCT**

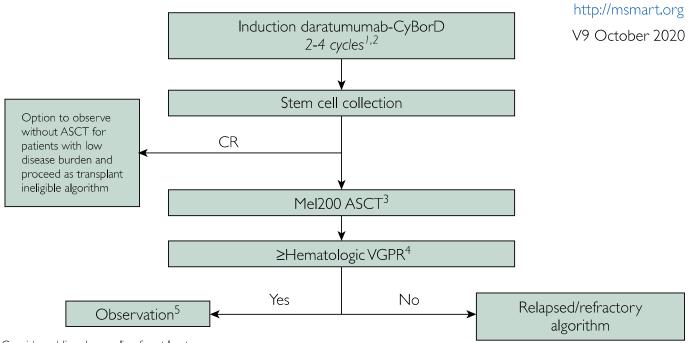
"Physiologic" age ≤70 years

Performance score ≤2

Systolic blood pressure ≥90 mm Hg<sup>a</sup>

Troponin T level <0.06 ng/mL (or high-sensitivity troponin T level <75 ng/mL)

Creatinine clearance ≥30 mL/min<sup>b</sup> (unless on long-term dialysis)


New York Heart Association class I/II

<sup>a</sup>Caution as well for patients with systolic blood pressure < 100 mm Hg.

<sup>b</sup>Selected patients may become eligible for autologous stem cell transplant with cardiac and renal transplant.

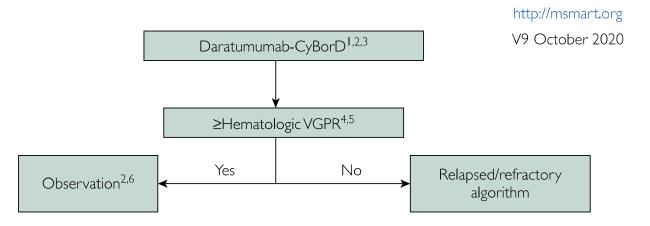
# Treatment algoritm for newly diagnosed transplant eligible AL amyloidosis patients





Consider adding doxycycline for at least a year

<sup>&</sup>lt;sup>2</sup>If daratumumab is not accessible, CyBorD is an acceptable alternative regimen (weekly bortezomib only)


<sup>&</sup>lt;sup>3</sup>For CrCl <30, use Mel 140 mg/m2

<sup>&</sup>lt;sup>4</sup>Decision to change therapy if in VGPR but <CR is based on a number of clinical factors. Re-refer to amyloid center of excellence

<sup>&</sup>lt;sup>5</sup>For patients with overt multiple, use myeloma-type maintenance; consider for BNPCs ¾20% and high-risk FISH (del17p, t(4;14), t(14;16) and t(14;20)). Please refer for myeloma mSMART guidelines for choice of maintenance

# Treatment algoritm for newly diagnosed transplant non eligible AL amyloidosis patients





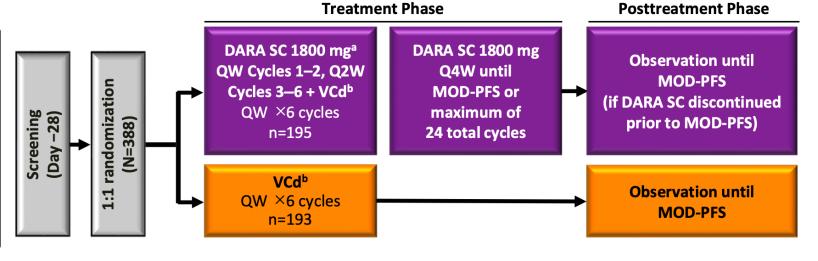
Consider adding doxycycline for at least a year

<sup>&</sup>lt;sup>2</sup>If daratumumab CyBorD, 6 cycles followed by daratumumab monotherapy, completing up to 24 cycles. If daratumumab is not accessible, CyBorD and BMDex are acceptable alternatives regimens (weekly bortezomib)

<sup>&</sup>lt;sup>3</sup>If young, consider stem cell collection for eventual ASCT if eligibility for transplant is foreseeable

<sup>&</sup>lt;sup>4</sup>If <PR at 2d months or <VGPR withi 4 cycles change therapy, unless signs of organ response are seen

 $<sup>^5</sup>$ Decision to change therapy if in VGPR but <CR is based on a number of clinical factors Re-refer to amyloid center of excellence


<sup>&</sup>lt;sup>6</sup>Only for patients with overt multiple myeloma, BMPCs ¾20% or high-risk FISH and who are not receiving extended duration daratumumab, consider maintenance. Lenalidomide should not be used in patients with advanced heart or autonomic nerve involvement

For IgM AL amyloidosis consider referral to amyloidosis center due to a more challenging management

# ANDROMEDA Eligibility criteria & study design

#### **Key eligibility criteria**

- AL amyloidosis with ≥1 organ impacted
- No prior therapy for AL amyloidosis or MM
- Cardiac stage I–IIIA (Mayo 2004)
- eGFR ≥20 mL/min

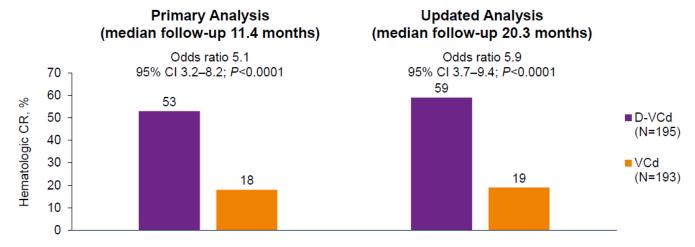


#### Stratification criteria

- Cardiac stage (I vs II vs IIIA)
- Transplant typically offered in local country (yes vs no)
- Creatinine clearance (≥60 mL/min vs <60 mL/min)</p>

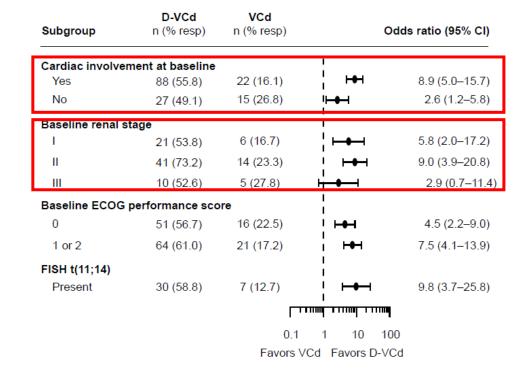
Primary endpoint: Overall hematologic CR rate

**Secondary endpoints**: MOD-PFS, organ response rate, time to hematologic response, overall survival, safety


ANDROMEDA is a randomized, open-label, active-controlled, phase 3 study of DARA-VCd versus VCd alone in patients with newly diagnosed AL amyloidosis

AL, amyloid light chain; CR, complete response; DARA, daratumumab; eGFR, estimated glomerular filtration rate; IV, intravenous; MM, multiple myeloma; MOD-PFS, major organ deterioration progression-free survival; PO, oral; Q2W, every 2 weeks; Q4W, every 4 weeks; QW, weekly; SC, subcutaneous; VCd, bortezomib, cyclophosphamide, and dexamethasone.

VCd in amyloidosis: bortezomib 1.5 mg/m<sup>2</sup> VCd in multiple myeloma: bortezomib 1.3 mg/m<sup>2</sup>


# ANDROMEDA Hematologic CR (primary endpoint)

- Hematologic CR was defined as normalization of FLC levels and FLC ratio and negative serum and urine immunofixation
  - If iFLC < upper limit of normal, normalization of the uninvolved FLC and FLC ratio were not required</li>
- Rates of hematologic CR remained significantly higher with D-VCd than VCd
- Median time to hematologic CR<sup>a</sup> was 2.0 months with D-VCd vs 2.8 months with VCd



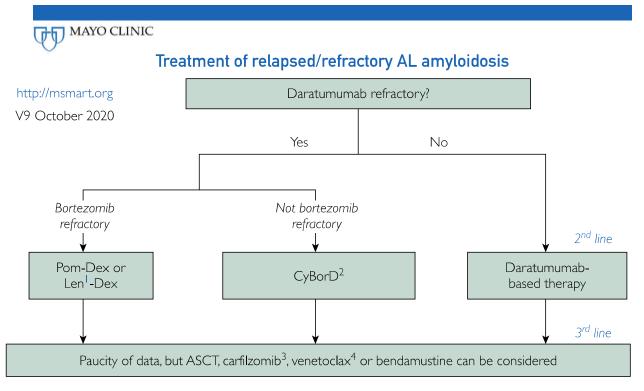
# ANDROMEDA Hematologic CR rates remained high across all prespecified subgroups

| Subgroup            | D-VCd<br>n (% resp) | VCd<br>n (% resp) | Odds                      | ratio (95% CI) |
|---------------------|---------------------|-------------------|---------------------------|----------------|
| Overall             | 115 (59.0)          | 37 (19.2)         | <br>  <del>        </del> | 5.0 (3.7–9.4)  |
| Sex                 |                     |                   | 1                         |                |
| Male                | 64 (59.3)           | 17 (14.5)         | I <del>I ♦ I</del>        | 8.7 (4.5–16.3) |
| Female              | 51 (58.6)           | 20 (26.3)         | I <del>I ● I</del>        | 4.0 (2.0–7.7)  |
| Age                 |                     |                   | 1                         |                |
| <65 years           | 68 (63.0)           | 20 (20.6)         | i <del>I</del>            | 6.6 (3.5-12.3) |
| ≥65 years           | 47 (54.0)           | 17 (17.7)         | i H <b>+</b> H            | 5.5 (2.8–10.7) |
| Baseline weight     | , ,                 | , ,               | İ                         | ,              |
| ≤65 kg              | 41 (66.1)           | 10 (13.5)         | i <b>⊢+</b> ⊢ 1           | 2.5 (5.4-29.2) |
| >65-85 kg           | 53 (55.2)           | 14 (18.9)         | i <b>⊢+</b> ⊢             | 5.3 (2.6-10.7) |
| >85 kg              | 21 (56.8)           | 13 (28.9)         | i⊢●⊢I                     | 3.2 (1.3-8.1)  |
| Race                |                     |                   | 1                         |                |
| White               | 88 (58.3)           | 28 (19.6)         | I <del>I#I</del>          | 5.7 (3.4-9.7)  |
| Asian               | 21 (70.0)           | 5 (14.7)          | I 1                       | 3.5 (4.0–46.3) |
| Others              | 6 (42 9)            | 4 (25 0)          | <b>⊢+</b>                 | 2 3 (0 5–10 6) |
| Baseline cardiac st | tage                |                   | 1                         |                |
| I                   | 24 (51.1)           | 13 (30.2)         | <b>⊢•</b> −1              | 2.4 (1.0-5.7)  |
| II                  | 46 (60.5)           | 17 (21.3)         | ı <del>1 •</del> • 1      | 5.7 (2.8-11.5) |
| a                   | 45 (62.5)           | 7 (10.0)          | ₩ 1                       | 5.0 (6.0–37.5) |
|                     | , ,                 |                   |                           | , , , , ,      |
|                     |                     | 1                 | 1 1 1                     |                |
|                     |                     | 0.1               | 1 10 100                  |                |



Favors VCd Favors D-VCd

# **ANDROMEDA Conclusions**

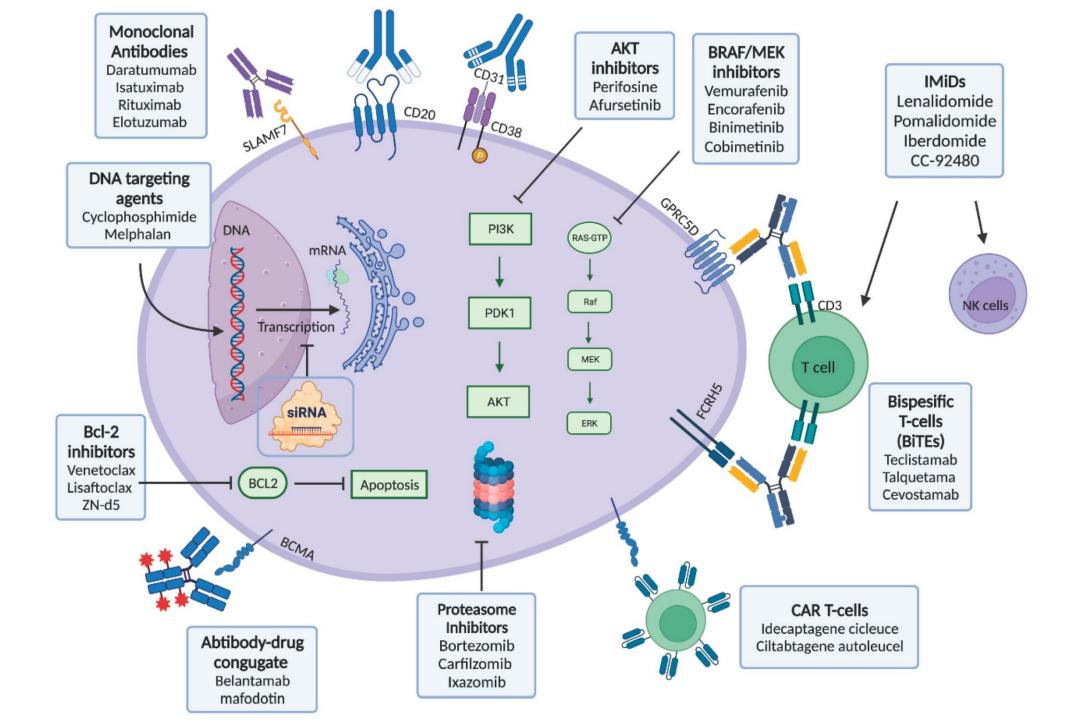

Longer follow up supports the benefit of the addition of Daratumumab to VCD

- ✓ Significantly improved hematological response
- ✓ Doubling rates of cardiac and renal response

Treatment is safe

These data support D-VCD as the new standard of care for patients with AL amyloidosis

# Treatment algoritm for relapsed / refractory AL amyloidosis patients




<sup>&</sup>lt;sup>1</sup>Starting dose of lenalidomide should be no higher than 15 mg/d

<sup>&</sup>lt;sup>2</sup>Melphalan-dexamethaone and ixazomib-dexamethasone are appropriate if patient has significant neuropathy

<sup>&</sup>lt;sup>3</sup>Not recommended in patients with cardiac involvement

<sup>&</sup>lt;sup>4</sup>For patients with(II;I4). Be cautious of infection risk.



#### Management of amyloidosis

Pillar 3 : <u>Supportive Care</u>



A multidisciplinary approach

Based on predominant involved organs and symptoms

Palliative care team

- Patients with advanced illness
- Counselling patients on symptom management
  - Psycho-social
  - Advanced care planning

#### **AL Amyloidosis: Summary**

- AL Amyloidosis = rare disease
- Management is challenging
  - Difficulties in diagnosis
  - Advanced disease at presentation
- Organ failures heart especially make treatment related toxicity very common
- Multidisplinary approach
- Deep and rapid response is important (impact on survival)
- Higher quality of response with introduction of Daratumumab
- Supportive care is very important